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Extended Abstract

Verifying that phase-locked loops (PLLs) will lock in
an acceptable time for the entire range of initial states
and process variations currently requires time-consuming
Monte Carlo simulations [Kuo et al. (2009)]. The size and
complexity of PLL circuits make verification of locking
a challenging application for reachability analysis, which
is often touted as an alternative to numerical simulation.
Convergence to locking can take hundreds or even a few
thousand cycles, which far exceeds the capabilities of typ-
ical reachability methods to compute overapproximations
that are tight enough to prove anything useful, even for
grossly simplified models of the PLL dynamics. This ab-
stract present a new method for reachability analysis that
overcomes these difficulties and achieves verification of
PLL locking behavior with computation times comparable
to, or better than, the time required for Monte Carlo
simulation.

The proposed approach to reachability analysis leverages
a recently developed method for computing reachable sets
for linear and hybrid dynamic systems with uncertain
inputs and uncertain parameters [Althoff et al. (2011a)].
This makes it possible to verify PLL locking using a be-
havioral model, where bounded input and parameter un-
certainties represent the range of dynamic behaviors of the
underlying circuits. If the range of behaviors represented
by the behavioral model with bounded uncertainties in-
cludes all possible behaviors of the more detailed circuit
models, proof of locking for the behavioral model implies
locking for the full circuit model, including ranges of initial
states and process variations. We note that simulation
studies are needed to validate the behavioral model, but
model validation can be carried out on parts of the overall
PLL circuit rather than on the complete circuit.

The PLL behavioral model, shown in Fig. 1, is a hybrid
dynamic system, due to the switching behavior of the
phase frequency detector (PFD). The slow convergence to
locking presents an insurmountable challenge for brute-
force reachability analysis because of the inevitable over-
approximations that occur when reachable sets are prop-
agated from one continuous mode to the next at each

discrete switching instant [Althoff et al. (2010); Girard
and Le Guernic (2008); Ramdani and Nedialkov (2009)].
We introduce two innovations to circumvent this problem.
First, because of the linear nature of the RC circuit that
computes the input to the VCO (basically PI gains), it is
possible to use a discrete-time formulation that eliminates
explicit computation of the continuous-time reachable sets.
The discrete-time linear models are of the form: zpy; €
Az, ® Uy, where A = [A, A] is an interval matrix, Uj, is a
zonotope (special case of a polytope), k € N is the cycle
number, and the operation C @ D = {c¢+ d|c € C,d € D}
is Minkowski addition. In this discrete-time model, the
reachable sets for the continuous state variables (capacitor
voltages, phase of the VCO output) are computed at each
cycle of the reference input, using different input values
and parameter values to capture appropriately the effects
of the charge pumps for each dynamic mode. Parameter
uncertainties capture the effects of timing variations in the
PFD as well as the underlying process variations. Symme-
try is also exploited. More details on these procedures will
be described in [Althoff et al. (2011b)].

The second innovation, which is the focus of this paper,
is to represent the propagation of reachable sets across
the discrete switching times using appropriate bounds
on parameters in the discrete-time linear models. This
approach to eliminating hybrid dynamic switching, which
we call continuization [Althoff et al. (2011a)], eliminates
the overly conservative overapproximations that occur in
traditional methods for computing reachable sets for hy-
brid systems. These overapproximations occur when the
reachable set at some instant has a non-empty intersection
with the guard condition for a discrete transition. To
propagate the reachable states using the new continuous
dynamics, this intersection needs to be overapproximated
with a set within the class of representations being used by
the method. In our case, this means that a zonotope needs
to be constructed that contains the intersection. Con-
tinuization avoids the construction by instead introducing
uncertain linear dynamics that cover the behaviors on
both sides of the guard condition. Reachability continues
with these dynamics until the reachable set has passed
completely into the guard region for the transition, at
which point the dynamics in the new mode can be used
exclusively.



Table 1. Required cycles to lock.

initial Reachability Analysis Simulink
phase cycles to cycles (avg.) cycles
difference guarantee  to reach to reach
A®(0) locking Tstart Tstart
[-1.0,—-0.8]m 2039 1845 1208.5
[-0.8, —0.6]m 1981 1787 1161.1
[—0.6, —0.4]7 1908 1714 1096.2
[-0.4,—-0.2]7 1811 1616 988.57
[-0.2,—0.0]7 1652 1457 839.37

Continuization is most effective when the dynamics in
the adjacent modes are not extremely different. For the
behavioral model of the PLL, continuization is applied
to represent the propagation of the reachable sets each
time the PFD switches the states of the charge pumps.
This application fits well with the conditions for which
continuization is effective. As an illustration of the results,
Fig. 2 shows the reachable set and some simulation runs
projected onto state variables v;, vp1 in Fig. 1) for the first
200 cycles for a particular PLL starting with the initial
phase difference [—m, —0.87].

Using the approach described above to compute reachable
sets for the PLL behavioral model, verification of PLL
locking is done in two steps. First, the transient behavior
from the initial state to the locking condition is computed.
We denote this set of states at which the system first
enters the locking constraints by Zsqr:. Then, a second
reachable state computation is applied to demonstrate
that the set Zg4q,r+ is invariant, which means the PLL
is locked indefinitely. When locking is demonstrated, the
proposed reachability method provides a bound on the
number of cycles needed to lock.

For a particular PLL, the first column in Table 1 shows
the number of cycles needed to lock for various sets of
initial phase differences A®(0). These numbers include
the additional cycles required to show that the set Zsqrt
is an invariant. The number of cycles to enter Zgsq,+ the
first time is shown in the next column. These numbers
are compared to the case when the system behavior is
analyzed by a Monte Carlo simulation. Since the cycle
number depends on the initial condition, the averages
are listed. Note that the bound on the cycles to locking
computed by reachability is not overly conservative.

Table 2 shows the time required to demonstrate locking for
each of the ranges of initial conditions. This is compared
to the time required to perform one MATLAB Simulink
run of the hybrid system model which is particularly slow
because of the need to detect the zero crossings in the PFD
switching logic. Circuit simulators would be considerably
faster than the MATLAB Simulink simulation. Never-
theless, these computation times demonstrate that the
computation time for the proposed reachability analysis
is likely to be competitive with the time to carry out full
Monte Carlo analysis.
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Fig. 1. Phase-locked loop.
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Fig. 2. Reachable sets of each cycle for the first 200 cycles.
Simulation results of each cycle are plotted by dots.
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