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I. INTRODUCTION

Cyber-physical systems (CPS) deploy interconnected com-
putational, or cyber, elements to sense and control a physical
environment. Given the complexity of software functionality
that gets implemented using these computational elements,
model-based design (MBD) approaches are often used to
develop and deploy such systems. The use of computational
models in this traditional MBD workflow at design time (be-
fore deployment) has been extensively studied in the literature.

With the introduction of internet-of-things (IoT) applica-
tions, there is usually an internet-enabled physical thing, or a
node, which collects some data from the physical environment
in the form of a data stream. For internet-enabled embedded
sensors applications, depending on the available compute
power it is possible do perform some simple computation,
often referred to as edge computing. An example includes
counting the number of cars seen on a highway using a USB
webcam and a Raspberry Pi [3]. For additional compute-
intensive tasks, such as analyzing historical traffic flow pat-
terns, the data stream is often sent to the cloud for further
processing in a cloud computing environment.

In contrast with embedded sensing applications, in case of
industrial IoT systems in the smart manufacturing domain, the
physical nodes could be, for example, various manufacturing
machinery in an industrial plant, sometimes referred to as a
physical asset. For these types of applications, the physical
node is itself a CPS with safety-critical real-time performance
requirements, and non-trivial amount of compute power may
be available at the disposal. Figure 1 presents a typical
connectivity architecture. The smart physical asset (CPS)
itself handles performs computations that often require hard
real-time guarantees, such as control tasks; edge computing
systems close to the physical asset for time-sensitive online
computations of the order of seconds, such as fault detection
and isolation; operation technology (OT) infrastructure for
computations of the order of minutes and hours, such as co-
ordinating the overall operation of of a plant; and information
technology (IT) systems enabled by the cloud for computations
over the days and months, such as business analytics.

In this abstract, we focus on edge computing where, in
contrast to traditional MBD for CPS, the use of computational
models is increasingly becoming useful at operation time
(after deployment) for model-based online monitoring and

analytics. Examples of such computations, in addition to fault
detection and isolation as stated above, include prognostics
and health monitoring, and other analytics such as remaining
useful life identification. This workflow usually makes use of
a computational model—called a digital twin—of the physical
asset for online monitoring. We consider a hardware and
software based demonstrator to showcase various workflows
in this domain.

II. OVERALL ARCHITECTURE

Figure 2 shows a high-level overview of the overall ar-
chitecture considered in this abstract. Gear pumps form the
physical model considered in this workflow. These pumps
have a motor controlled by a programmable logic controller
(PLC). The pump along with the PLC forms the smart asset.
Additional computational machinery next to the PLC, such as a
desktop computer, a real-time hardware such as the Speedgoat
target machines1, or other edge devices such as HPE Edgeline
10002 provide the edge computing functionality nearby the
asset. The data gets fed to a cloud service provider, such as
Microsoft Azure cloud and Amazon Web Services cloud. A
remote client computer that is connected to this cloud can
be used for visualization of the data as well as the analytics
results.

III. DIGITAL TWIN MODELING

A digital twin is a computational model of a real physical
asset in operation. Such a model is used in-operation to control
and optimize behavior of the particular real asset by identi-
fying anomalies, efficiencies, or the possibility of particular
future events. There are two approaches to developing such a
computational model of the pump.

A. Modeling From First Principles
First-principles based modeling approaches involve creating

a physical model based on the laws of physics, an approach
often called white-box modeling, e.g., of the gear pump
dynamics [2]. We create such a first-principles based model
of the pump in SimscapeTM, an acausal physical modeling
formalism which provides a natural mechanism for creating
such physics-based models.3

1https://www.speedgoat.com/products-services/real-time-target-machines
2https://www.hpe.com/us/en/product-catalog/servers/edgeline-systems.

hits-12.html
3https://www.mathworks.com/products/simscape.html



Fig. 1. Computation and Connectivity Structure in a Typical Industrial Internet of Things Application.

Fig. 2. Overall architecture of the demo.

B. Data Driven Modeling

At the other end of the spectrum are data-driven—or black-
box—modeling approaches, based on machine learning or
system identification techniques to learn or identify models
from measured data about the physical asset in operation [1].
Textual modeling languages such as MATLAB® are well
suited for modeling such data-driven models.

Our goal is to develop both physics-based and data-driven
digital twin models of the pump to show the efficacy of the
approaches. Supervisory control operational in the PLC can be
modeled using a combination of Simulink® and Stateflow®,
tools for block diagram modeling and statechart modeling
respectively.

IV. SIMULATION AND ANALYSIS

There are two main modes in which digital models are
simulated on the edge.

A. In Real Time: Synchronized with the Wall Clock

Real-time simulation of the digital twin model synchronized
with the wall clock is useful simulating the physical asset ‘in
parallel’ while in operation, for monitoring applications such
as anomaly detection and fault-detection and isolation.

B. As Fast As Possible

Simulations that are run as fast as possible, but not nec-
essarily synchronized with the clock, are useful for several
scenarios including the following.

• Running the so called ‘what if’ scenarios where the digi-
tal twin is simulated in a scenario forward in time before
putting the physical twin in the operating condition.

• Running several simulations in parallel in a batch mode to
generate synthetic simulation data. Such simulation data
is useful for further online learning, e.g., learning of set
points and parameters, and reinforcement learning.

C. Simulation setup

The demo under development showcases three key work-
flows for streaming realistic simulation streaming into Azure
IoT Hub Devices.

• The parsim command4 in MATLAB for parallel sim-
ulation of Simulink models along with a MATLAB
Distributed Computing Server5 is used for the simulation
functionality.

• A number of digital representations of pumps are set
up to send data into Azure IoT Hub. Some pumps may
be triggered to initiate failures, or be running in various
states of age (new vs. old), etc.

D. Simulated Faults

Two kinds of faults, namely leakage faults and blockage
faults, can be emulated on the physical pump. These fault
conditions can be detected via monitoring a discrepancy be-
tween the simulated behavior of the digital twin and observed
behavior of the physical twin.

V. DISCUSSION

The overall goal of this demo is to develop a hardware-
and software-based demonstration of various digital twin
workflows from the industrial IoT application domain with
an objective of simulating realistic scenarios, fault conditions,
and realistic streaming data. Exploring the use of formal
specification and monitoring approaches for anomaly detection
and fault detection and isolation using temporal logics [4]
would be an interesting future work.
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