
Architectural Modeling and Analysis of
Cyber-Physical Systems

Ajinkya Bhave†, David Garlan‡, Bruce H. Krogh†, Bradley Schmerl‡, and
Akshay Rajhans†

†Department of Electrical and Computer Engineering
‡School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{ajinkya|garlan|krogh|schmerl|rajhans}@cmu.edu

Abstract. Cyber-physical systems are systems in which software and
physical elements of a system are equally important. This paper presents
an architectural approach to modeling cyber-physical systems that allows
physical modeling to be done in conjunction with software modeling,
can be specialized to different physical domains, and can be used with
existing tools and techniques for modeling software and physical systems.
Our approach allows the physical and software modeling to be integrated
into an architectural model that facilitates the analysis and comparison
of alternative designs of both the software and physical components.

1 Introduction

Cyber-physical systems are systems in which software (cyber) and physical as-
pects are equally important. For example, the design of building heating systems
must take into account both the physical phenomena of heat exchange through
windows, walls, and rooms and the behavior of the software that implements
the control algorithms. Similarly, the success of vehicle control systems depend
on the interactions between the embedded software and the physical vehicle
dynamics.

Cyber-physical systems are designed and analyzed using a variety of mod-
eling formalisms and tools. Each representation highlights certain features and
occludes others to make analysis tractable and to focus on particular perfor-
mance attributes. Typically a particular formalism represents either the cyber
or the physical elements well, but not both. For example, differential equation
models typically represent physical processes well, but do not represent naturally
the details of computation or data communication. On the other hand, discrete
modeling formalisms such as Petri nets and finite state automata are well suited
for representing sequential behavior and control flow, but are not particularly
useful for modeling continuous phenomena in the physical world.

Treating the cyber and physical models separately makes it difficult for en-
gineers to evaluate trade-offs between design choices involving alternative con-
figurations of both the software and physical components. What is needed is

2 Bhave et al.

a framework that provides a unification of the cyber and physical domains to
enable reasoning using multiple modeling formalisms. Such a unified framework
should serve as a point of reference for modeling aspects of the systems using
notations and tools already familiar to engineers. To enable this, it must be pos-
sible to abstract the unified model into views that elide detail not required for
particular analyses.

We believe that concepts from software architecture modeling are general
enough to be used as the basis for both software and physical modeling. An ar-
chitecture model provides the scaffolding upon which different kinds of semantic
analysis can be built. In [26] we presented elements of a cyber-physical architec-
ture style that can be used to construct comprehensive models of cyber-physical
systems. In this paper we elaborate on this style. Specifically, we show how
the generalized cyber-physical style can be specialized for specific domains, is
amenable to analysis using existing tools and modeling languages, and supports
alternative architectural views.

The following section introduces related work in the area of architecture and
physical modeling, and discusses why existing approaches are inadequate for
modeling cyber-physical systems. Section 3 presents the CPS architectural style
and introduces an example system modeled with this style. Section 4 describes
two alternative architectural views of the same underlying CPS system. Section
5 explains how these views can be analyzed with existing tools. In Section 6 we
discuss the current state of our implementation and how we are applying our
approach to real systems. Finally, Section 7 summarizes the contributions of this
paper and discusses directions for future work.

2 Related Work

Research on architectures has focused primarily on the cyber aspects of sys-
tems, particularly software architectures and the cyber substrates for hosting
distributed systems (e.g., processors, memory, buses and networks). In this work,
we focus on component and connector (C&C) views of an architecture because
we are interested in the dynamic interactions between the cyber and physical
parts of a system. A number of architecture description languages (ADLs) have
been developed for representing C&C architectures [23]. They all build on the
basic concepts outlined in [27, 24, 8]: a software architecture is a graph of compo-
nents and connectors in which components represent computational elements of
a system’s runtime structure, and connectors represent pathways of communica-
tion between components. Modern ADLs also allow architects to define and use
architectural styles to specialize general architectural concepts into specific do-
mains. There are also a range of formalisms and tools for analyzing architectures
[23, 15].

Architectural views have long been recognized as a critical aspect of archi-
tectural specification [11, 21]. For example, the IEEE 1471 standard for archi-
tectural documentation and the Open Group’s TOGAF [28] are based on the
idea of specifying a collection of architectural views, where different architectural

Architectural Modeling and Analysis of Cyber-Physical Systems 3

views represent the concerns of different stakeholders [6]. We can take advan-
tage of this concept to provide different views of a cyber-physical system that
are related, but separate out different modeling concerns, and so can be used
with existing analyses for cyber and physical systems.

There are two fundamental problems with current architecture modeling that
limit its potential to fully address the engineering problems of large-scale, het-
erogeneous cyber-physical systems: inadequate representation of cyber-physical
elements and interactions, and an inability to support tractable analysis based
on separation of concerns. There is also a need to handle consistency and map-
ping between the different views of a CPS architecture, so that we can analyze
the coverage of all the views to be satisfied that the entire system is adequately
modeled, and to related the analyses done in different views to each other. We
need this to infer the correctness of the entire cyber-physical system.

In the domain of physical systems, there are also a number of tools for mod-
eling and simulating physical systems. These tools model aspects of the physical
dynamics of systems such as thermal dynamics, mechanics, etc. For example,
Modelica is a popular object-oriented, open-standard language for constructing
component-based models of physical systems [3]. MapleSim is tool for developing
models of physical systems and generating efficient code for real-time simula-
tions, particularly for hardware-in-the-loop testing [1]. In contrast to the signal
flow semantics used in control system modeling, compositions of physical sys-
tems are most naturally modeled using acausal connections, which are symmetric
reaction relations for which the directionality of interaction flows is determined
by the internal states of both components. Making connections between phys-
ical modeling tools and control-oriented modeling frameworks has become an
important goal for model-based development. The MathWorks has introduced a
collection of physical modeling tools, especially Simscape, a textual MATLAB-
based modeling language, along with a Simulink block set, that makes it possible
to integrate physical models with control-oriented simulations [4].

These tools for modeling physical systems do not provide representations of
many cyber aspects systems, such as timing, deployment, or behavior of the
software. More comprehensive modeling tools include Ptolemy II [9], which pro-
vides a set of models of computation for modeling both software and physi-
cal systems. SysML (Systems Modeling Language) [5] is an extension of the
UML2.0 standard for systems engineering applications. SysML reduces UML’s
software-centric restrictions and adds two new diagram types, requirement and
parametric diagrams. However, there currently does not exist an easy way to in-
corporate physical dynamical models, including feedback control systems using
SysML modeling constructs. MARTE [2] is a UML profile that adds capabilities
for model-driven development of Real Time and Embedded Systems (RTES). It
consists of a set of domain-specific specializations of appropriate general UML
concepts providing modelers with first-class language constructs for modeling
RTES applications. MARTE has several sub-profiles that address specific mod-
eling dimensions in RTES. Among them are specification of non-functional prop-
erties, semantics and values for time, modeling and specifying resource usage,

4 Bhave et al.

and time and space related allocation. These modeling approaches typically stop
at the interface between the software and the physical environment and do not
model the physical environment themselves. Therefore, it is difficult to under-
stand the interactions between physical aspects of the system, for example how
heating one room affects the temperature in adjoining rooms, and their effects
on the software intended to control them.

3 A CPS Architectural Style

Our work on architectural modeling for cyber-physical systems addresses the
deficiencies of the related work in three ways: (a) we develop an architectural
style that incorporates physical modeling elements as first class elements in the
style, and also provided elements intended to bridge between software and phys-
ical elements; (b) we can extend this style to make it amenable to a number of
different specific cyber-physical domains; and (c) architectures defined in this
style can be used as the basis for analysis using existing modeling tools. In this
section, we introduce a CPS architectural style.

The challenge in defining an architectural style is to find a balance between
specificity and generality. We focus on cyber-physical systems for embedded mon-
itoring and control. The CPS architectural style proposed in [26] treats cyber
and physical elements as equally significant, and that can serve as the foundation
for application-specific styles in this broad domain. It comprises three related
families pertaining to the cyber domain, the physical domain, and interconnec-
tions between these domains. In this section we briefly describe the elements of
the CPS architectural style and illustrate its application using a small example.

We define our architectural style in Acme [14], which has support for defining
and extending architectural styles, as well as defining mix-in styles that can be
used to support architectural analysis.

3.1 CPS Components and Connectors

The cyber family provides the following elements to represent computation, data
and communication:

– cyber components: data store, computation, IO interface;
– cyber connectors: call-return, publish subscribe.

The elements of the physical family correspond to standard constructs in energy-
based models of physical dynamic systems using concepts of effort and flow
variables [16, 20]:

– physical components: energy source, energy storage, energy transducer, en-
ergy dissipators;

– physical connectors: power flow, equal effort (shared variable)

The elements of the cyber-physical interface (CPI) family represent connections
between computational and physical systems:

Architectural Modeling and Analysis of Cyber-Physical Systems 5

– CPI components: cyber-to-physical/physical-to-cyber transducers;
– CPI connectors: cyber-to-physical/physical-to-cyber translators.

The difference between CPI components and CPI connectors is a matter of
detail and sophistication in the interface. An intelligent sensor that performs
signal processing functions might be represented as a CPI component, whereas
a simple digital thermometer could be represented as a CPI connector.

These generic CPS components and connectors can be used to define new
families with application-specific features and attributes. For example, for CPS
applications involving thermal processes, the physical family can be special-
ized as a thermal family by introducing annotations that identify the effort and
flow variables as temperature (Kelvin) and heat flow (Watts), respectively. The
energy source components become (constant or variable) temperature and heat
flow sources, while heat storage elements represent the ability of a material body
to store internal energy. Dissipative components reflect phenomena where heat
energy is lost over time, such as thermal conduction, convection, and radiation
processes. Two types of thermal connectors are defined as: thermal flow, which
introduces dynamic coupling between thermal components through lossless heat
flow; and equal temperature, which conserves heat energy by enforcing the same
temperatures and net-zero heat flow among multiple thermal components.

3.2 An Example Cyber-Physical System

To illustrate the application of the CPS architectural style, we consider a heating
system for a two room-building illustrated in Fig. 1. Two rooms are separated
by a wall with a specified thermal conductivity. The outside walls of the building
provide insulation from the outside temperature with a specified thermal con-
ductivity. We assume a winter heating scenario, that is, we assume the outside
temperature is lower than the desired temperature.

The temperature is sensed in Room 1 and the furnace supplies heat directly
to Room 1. A thermostat contains a microprocessor that implements an on-off
control algorithm by sampling the temperature and the temperature setpoint,
which is set manually in Room 1. The thermostat sends on/off commands over a
network to the furnace microcontroller, which in turn activates/deactivates the
heating coil. In this example we assume air is circulated over the coil constantly,
i.e., ventilation is not controlled. As shown in the figure, there is also a manual
switch on the furnace that can be used to deactivate the heating coil. When the
manual switch is switched from off to on, the heating coil is activated but does
not start heating until it receives an on command from the furnace controller.

The cyber elements in this system are the thermostat microprocessor, the
furnace microcontroller, and the network connections from the thermostat to
the temperature sensor, setpoint input and furnace. The outdoor temperature,
the rooms, and the furnace heating coil comprise the physical elements. The
thermometer, the actuator between the furnace microcontroller and the heating
coil, the manual furnace switch and setpoint input device connect the cyber and
physical worlds.

6 Bhave et al.

controller
(thermostat)

furnace

temperature
sensor wall

room 1 room 2

outdoor temperature

temperature
setpoint

manual
power
on/off

Fig. 1. Two-room building and heating system.

Figure 2 illustrates the use of the general CPS and thermal components and
connectors in AcmeStudio to model the two-room heating system. The thermo-
stat microprocessor is modeled as a combination of a computation component
that implements the control algorithm and a data store that represents the mem-
ory where the setpoint value is stored. The furnace microcontroller is modeled
as an IOinterface component, reflecting its function as device-level interface soft-
ware. The unidirectional communication from the thermostat to the furnace is
represented by a send-receive cyber connector. Each room is modeled by a ther-
mal storage component, which represents an enclosed volume with heat storage
capacity. The outside environment and the heating coil are both modeled by
temperature sources. The wall between the two rooms, and the wall between
each room and the outside environment are each represented by a thermal con-
duction component. The heat exchange between Room 1 and the furnace heating
coil is represented by a thermal convection component. The heat flow between
all the components is represented by thermal connectors. For example, there is
an equal temperature connector that connects the corresponding ports of Room
1 to one side of each wall component and the convection component.

The thermometer is represented by a physical-to-cyber connector from Room
1 to the thermostat controller. The actuator from the furnace microcontroller
to the heating coil is a cyber-to-physical connector that converts software com-
mands to physical signals that change the temperature of the coil. The manual
switch and the setpoint input device are shown as physical-to-cyber transducer
elements, which accept user inputs and convert them into cyber events.

4 Two Alternative Architectural Views

Domain-specific components and connectors built on the CPS architectural style
make it possible to create architectural models with all the details needed to com-
pletely describe a cyber-physical application. A complete architecture detailing

Architectural Modeling and Analysis of Cyber-Physical Systems 7

Fig. 2. Complete architectural view of the example system.

all components and connectors for a cyber-physical system is useful to document
design alternatives and to guarantee that connections between components are
compatible and complete. Such “flat” models are of limited value for formal
analysis, however, because the associated behavioral modeling formalisms are
not usually so comprehensive. Moreover, analyses of various system properties
usually do not require all of the detail in the complete architectural model, and
for all but the simplest systems, retaining all of the architectural details would
make most analyses intractable. For example, the number of rooms in the physi-
cal part of the model and how they are connected to each other (walls, corridors,
windows, etc.) may not be necessary for a model of how the software behaves.
However, the abstracted characteristics of the rooms (such as how long they
take to reach a desired temperature) may be important to the software model-
ing (e.g., in informing the software how much heat to supply to the room, and
how long to turn on the furnace for). To illustrate how a designer can look at
a given system from multiple modeling perspectives motivated by the types of
behavioral analyses that can be carried out at the system level.

4.1 FSP Architectural View

FSP [22] is a process algebra in the tradition of CSP [19] for modeling behavior
of software. FSP can capture the behavior of cyber elements fairly well, while the
physical elements are described by abstracting away their continuous dynamics.
The components in an FSP architectural view are those entities whose behavior
can be described by an FSP primitive process. A connector between two FSP

8 Bhave et al.

components signifies that the two processes interact with each other through
events, and provides mapping between the event alphabet of the components it
is connected to. The behavior of the overall system is the parallel composition
of the component and connector processes [7].

The FSP architectural view has three separate FSP processes. The Environ-
ment component encapsulates the thermal dynamics of the two-room building.
Its FSP specification contains the temperature states low, normal and high,
which discretize the continuous temperature range of Room 1. The environment
makes transitions between temperature states in response to the heat and cool
events, which are communicated through the connector between the environment
and the Furnace component. The furnace translates, which cyber actions into
heating effects on the environment, can be in one of three states: Heating,
NotHeating, or Shutdown. Two events, powerOn and powerOff, are de-
fined in the furnace specification to model the furnace being switched on and
off manually. The Thermostat component represents the control actions taken
by the cyber world on the environment. The thermostat senses the state of the
environment through shared sensing events defined in the connector between the
two components. Based on the current temperature value, the thermostat turns
the furnace heating coil on or off using events heatOn and heatOff defined in
the common connector.

The FSP architectural view is generated from the complete CPS architecture
by encapsulating the manual switch and furnace microcontroller as a single Fur-
nace component, while the thermostat controller, memory and set point input
are abstracted into a Thermostat component. The rooms, outside environment
and heating coil make up the Environment component.

4.2 LHA Architectural View

For modeling mixed discrete-continuous dynamical systems, hybrid automata
[25] serve as an intuitive and expressive framework. Linear hybrid automata
(LHA) [18] are class of hybrid automata in which the dynamics of the contin-
uous variables and conditions for discrete transitions are represented by linear
predicates.

In this hybrid system view of the system, each component’s behavior is spec-
ified by a LHA. The discrete states of the component are modeled by the vertices
of a graph (modes), and the discrete dynamics of the component are modeled by
the edges of the graph (discrete jumps). Discrete jumps between states are trig-
gered by events that are generated internally based on guard conditions that are
affine functions of the continuous state variables or externally by other compo-
nents because they synchronize on the transitions. Synchronizing on transitions
captures the discrete interaction between LHAs. In input-output frameworks,
LHAs can also declare continuous variables that belong to other LHAs as their
input variables, which they can read but cannot modify. Declaring a state vari-
able from one LHA as an input variable of another captures the continuous
interaction between LHAs. A connector in the LHA architectural view defines
the set of synchronizing events and input variables shared between the LHAs of

Architectural Modeling and Analysis of Cyber-Physical Systems 9

the connected components. The behavior of the complete system is defined as a
composition of the LHAs defined by the individual components.

To illustrate the LHA architectural view of our example system, the physical
dynamics of the rooms, the control action of the thermostat and the switching
of the furnace are modeled as three distinct LHAs. The Rooms automaton has
four discrete states. When the rooms are in the heating mode, the tempera-
ture increases with positive bounds on the rate of change. When the rooms are
in the cooling mode, the temperature decreases with negative bounds on the
rate of change. The Rooms LHA changes between these two states on the events
heatOn and heatOff, which it receives from the Furnace LHA as a discrete in-
teraction via the shared connector. The temperature state variable belonging to
the rooms LHA is declared as an input variable by the Thermostat LHA. The
rooms cannot heat beyond temperature t Hottest or cool below t Coldest. This
behavior is captured by having the rooms enter two other states atHottest
and atColdest when the respective temperature limits are reached.

The LHA architectural view is generated from the complete CPS architecture
by defining an Acme representation for each LHA component, which is similar
to that for the FSP architectural view. The difference is that the furnace heating
coil is now a part of the Furnace representation instead of the Environment.

5 Analysis

In this section, we illustrate how each of the architectural views can be used to
provide analysis of the physical and cyber aspects of the system, using existing
tools and techniques. We first show how FSP annotations can be used to analyze
the behavior of the software components then showing how LHA can be used to
analyze timing aspects of the system.

5.1 FSP Annotations and Analysis

FSP is supported with an analysis tool called the Labeled Transition System
Analyzer (LTSA), which can be used to check a system for properties such as
absence of deadlock and liveness. To specify liveness properties in the style of
linear temporal logic, LTSA uses fluents [17]. A named fluent is defined by in-
dicating two sets of events: the first set of events causes the fluent to become
true; the second set of events causes the fluent to become false. So, for ex-
ample, the specification fluent BEINGCOLD = <cold, {normal, hot}> defines a
fluent BEINGCOLD, which becomes true when the cold event occurs, and becomes
false when either the normal or hot event occurs. Fluents can then be used
in specifications, like assert []<>BEINGCOLD which states that no matter what
state, the system will become cold.

In the FSP view of the architecture, each component and connector can be
annotated with an FSP process description defining its behavior. For example,
the Environment is annotated with the following FSP process:

10 Bhave et al.

ENV = E[Normal],

E[temp:TempSetting] =

(be[temp] ->

C[temp]),

C[temp:TempSetting] =

(// Low temp cases

when (temp==Low) heat -> E[Normal]

|when (temp==Low) cool -> E[Low]

|when (temp==Low) dontChange -> E[Low]

// Normal temp cases

|when (temp==Normal) heat -> E[High]

|when (temp==Normal) cool -> E[Low]

|when (temp==Normal) dontChange -> E[Normal]

// High temp cases

|when (temp==High) heat -> E[High]

|when (temp==High) cool -> E[Normal]

|when (temp==High) dontChange -> E[High]

).

The rooms can be in three different temperature states as indicated. The
room event ‘be[Low]’, which signifies the room temperature being low and the
thermostat event sense[Low], which signifies the thermostat sensing the room
temperature to be low are renamed as simply Low. This event renaming informa-
tion is annotated to the connector between the environment and the thermostat.
In a similar way, the Thermostat and Furnace are annotated with FSP processes.

The FSP specification is formed by composing the process definitions of each
of the components and connectors, along with event mappings, fluents and as-
sertions in the system, and properties defining global states and constants (also
defined in the system) and stitches them together. With all this information
collected, the system description as the composite process is generated, with the
LTSA checks inserted. This information is then sent to LTSA to be examined.

Three fluents are defined to characterize the state of the overall system in
this example; whether the environment is cold, normal, or hot. A sample LTL
specification (indicated by assert) captures a required property of the system:
it is always the case that if the environment is cold, then eventually it will be
brought to the normal state. When we check this property in LTSA, we get an
error message, and a trace indicating that there is a problem.

It turns out that the thermostat does not take into account the fact that
the furnace might be manually turned off/on. Hence the thermostat can get into
a state where it is believes that the furnace is on, but the furnace has been
shutdown and then manually switched on, leaving it in the off (non heating)
state. This problem can be viewed as an architectural issue since it indicates the
lack of a monitoring connector between the furnace and the thermostat, which
would allow the thermostat to know when the furnace has been manually turned
off/on. Once we have added in the extra connector, and rewritten the thermostat
to handle those new events, the property succeeds.

Architectural Modeling and Analysis of Cyber-Physical Systems 11

5.2 LHA Annotations and Analysis

LHA can be analyzed with PHAVer [12], which supports reachability analysis,
simulation relation checking and compositional verification of LHA. PHAVer
allows for modular descriptions of a system in terms of its component automata.

Each component in the LHA architectural view is annotated by a PHAVer
automaton. The definition consists of the automaton name, a list of synchroniz-
ing labels, a list of input variables, a set of output variables, and the automaton
body. These individual automata can later be composed to model the com-
plete system. Each connector is annotated with the lists of synchronizing labels:
input-output variables (input of the first automaton/output of the second) and
output-input variables (output of the first automaton/input of the second).

To illustrate for our example system, the Thermostat is annotated with the
following PHAVer automaton:

automaton thermostat

state_var: c; //c = clock variable

input_var: t;

synclabs: tick, startHeat, stopHeat, exp;

loc idle: while c <= tau_sample wait {c’==1};

when c==tau_sample sync tick do {c’==0} goto checking;

loc checking: while c<=0 wait {c’==1};

when t<=tset_L sync startHeat do {c’==0} goto idle;

when t>=tset_H sync stopHeat do {c’==0} goto idle;

when tset_L<=t & t<=tset_H sync tick do {c’==0} goto idle;

initially: idle & c==0;

end

In a similar way, there exist LHAs for the Furnace and Environment com-
ponents, with the relevant synchronization labels. The complete system is the
composition of the individual component LHAs, along with the specification that
the system will be checked against.

The FSP analysis of our example system described above exposed a problem:
the thermostat’s knowledge of the furnace state (on or off) could be erroneous, if
the furnace was manually switched off. One solution was to add another connec-
tor that notifies the manual shutdown of the furnace to the thermostat. Another
simple solution would be to have the thermostat time-out after a certain period
and resend a command to the furnace. For this solution to work, the time-out
of the thermostat has to be adequately fast. LHA can model this sampling rate,
along with the room temperature dynamics using continuous variables.

This sampling strategy is modeled in the thermostat’s LHA description as
follows. The thermostat is in idle mode until its clock, a continuous state vari-
able c, hits the sampling period tau sample. Once that happens, the thermostat
enters checking mode where it checks the continuous temperature variable t

taken as input from the rooms automaton, and depending on where it lies with
respect to the hysteresis band around the setpoint [tsetL, tsetH], commands the
furnace through the synchronizing labels startHeat, stopHeat or the externally

12 Bhave et al.

unobservable tick. The variable tau sample is defined as a design parameter, i.e.
a system constant.

With the specification modeled as an LHA, we can check whether the room
temperatures stay in the desired range when the furnace is turned on and off
manually. In particular, we validate the specification that (i) the temperature t
remains in the acceptable zone [tm, tM] whenever the furnace has not been turned
off, (ii) whenever the furnace turns off, it stops checking what happens to the
temperature and (iii) whenever the furnace turns back on, it waits for a little
while, to allow the furnace to warm up, and then goes to (i) and starts checking
again. This waiting period is modeled using an automaton called recover that
resets the temperature test after a specified time given as a system constant.

The range of values for the thermostat sampling time and the recover time
that obey the system specifications are found using the PHAVer analysis query

sys = thermostat & room & furnace & recover;

is_sim(sys,spec);

A correct set of values is one for which PHAVer returns ‘Yes’ as an output
for the ‘is sim’ analysis question. By analyzing the continuous-time behavior of
the physical system (the room), the designer has an alternative solution to the
furnace switch-off problem, using a validated thermostat sampling time.

6 Implementation and Validation

We have implemented the FSP and LHA analyses as plugins to AcmeStudio.
Each analysis defines a mixin style that defines the properties required to anno-
tate the architecture to make it suitable for the analysis. The plugins use these
mixin families to provide custom user interface views in AcmeStudio for viewing
and entering information pertinent for each analysis. Each plugin goes over the
architectural model and extracts the relevant properties for analysis, producing
a file for analysis by the respective tool, LTSA or PHAVer.

To validate our approach on a real-world example, we are modeling and ana-
lyzing the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control
(STARMAC) [13]. We report on this in detail in [10], and summarize it here.
STARMAC is a fleet of quadrotor helicopters, developed as a test bed for novel
algorithms that enable autonomous operation of aerial vehicles. Figure 3 shows
the vehicle with four rotors arranged symmetrically about its body frame, each
powered by lightweight, brushless DC motors, for a thrust of 8 N per rotor.

The vehicle is equipped with three separate sensors for full state estimation.
An inertial measurement unit (IMU) provides three-axis attitude, attitude rate
and acceleration. Height above the ground is determined using a sonic ranging
sensor. Three-dimensional position and velocity measurements are made using
differential GPS. An onboard extended Kalman filter is used to combine GPS
and raw inertial measurements for accurate full-state estimation. Computation
and control are managed at two separate levels. The low-level attitude control,

Architectural Modeling and Analysis of Cyber-Physical Systems 13

Fig. 3. The STARMAC quadrotor.[13]

which performs real-time control loop execution and outputs PWM motor com-
mands, occurs on an onboard low-power microcontroller. The high-level plan-
ning, estimation and control occurs on a more powerful single-board computer.
The ground station controller (GSC) is a high-level motion planner and coor-
dinator for the quadrotor. It generates reference trajectories for the quadrotor
to follow, displays telemetry data received from the vehicle, and manages co-
ordination among multiple aircraft. The ground station also has joysticks for
control-augmented manual flight, when desired. With reference to Figure 4(a),
the nonlinear dynamics of the quadrotor helicopter are those of a point mass m
with moment of inertia Ib ∈ R3×3, location p ∈ R3 in inertial space, and angular
velocity ω ∈ R3 in the body frame. The vehicle undergoes forces F ∈ R3 in the
inertial frame and moments M ∈ R3 in the body frame, yielding the equations
of motion, where Db is the aerodynamic drag force, and g is the acceleration due
to gravity. RRj ,I and RRj ,B are the rotation matrices from the plane of rotor j
to the inertial coordinates and the body coordinates, respectively. One of our ob-
jectives is to formally represent such dynamic behavior in the CPS architecture
for the quadrotor system.

Figure 4(b) illustrates the use of the CPS style to model the quadrotor in
Acme. Each cyber controller (attitude, position, and GSC) is mapped to a sepa-
rate computation component that implements the control algorithm. The com-
munication of setpoints from a higher-layer controller to a lower-layer controller
is modeled as a send-receive connector. The periodic relaying of vehicle state
from the lower control layer to the higher layer is modeled as a publish-subscribe
connector. This illustrates the use of distinct connector types to represent differ-
ent communication patterns between the same components. The vehicle frame
is modeled as a rigid-body component, whose mass and MI are affected by the
forces and moments acting at its ports, according to the dynamic equations of the
quadrotor. The vehicle frame is annotated with the body and inertial reference
frames along with the RRj ,I and RRj ,B transformations. Each rotor and motor
actuator is modeled as a single electromechanical transducer called Act, contain-
ing an electrical port and two mechanical ports, one each for the translational
and rotational domains. The component models the conversion of input motor
voltage to an output thrust (force) and torque acting on VehicleFrame. As we

14 Bhave et al.

(a) (b)

Fig. 4. Quadrotor (a) free body diagram [13] and (b) CPS architecture.

refine the architecture, this component can have sub-structure, where the motor
and rotor are separate components, with a torque connector between them. Each
Act is connected to the VehicleFrame by two equal velocity connectors, one for
force balance and one for moment balance. This models the action and reaction
phenomenon between each rotor assembly and the vehicle frame.

The drag force is described as a dissipative component, whose magnitude
depends on the wind velocity and the aircraft velocity, among other parameters.
The complex empirical relationship of drag force to the velocities at its ports
is annotated as a behavior property of the component. Gravitational force is
modeled as a flow source component, since it exerts a constant force on the
airframe. It is connected to the vehicle frame by a measurement connector. The
IMU and GPS are both modeled as P2C transducers, since they perform filtering
on their raw sensor readings. On the cyber side, they are connected to their
respective controllers by publish-subscribe cyber connectors, since these sensors
send periodic streams of data to the controllers. On the physical side, they are
connected by measurement connectors to the vehicle frame. The sonar sensor
is modeled as a simple P2C connector, going from the vehicle frame to the
attitude controller. The connector is annotated with sonar parameters including
detection beam width, effective range, and resolution. Each Act component is
sent actuation commands from the attitude controller through C2P connectors,
representing the conversion of cyber commands to voltage for each motor.

Architectural Modeling and Analysis of Cyber-Physical Systems 15

7 Discussion and Future Work

This paper presents an approach to modeling cyber-physical systems using an
architectural style that can be specialized for particular domains. The CPS ar-
chitecture style provides a set of components and connectors for developing a
complete architectural description of systems involving both cyber and physi-
cal elements. The CPS architecture becomes a frame of reference for multiple
architectural views of a system corresponding to different modeling formalisms.
Architectural views for two common modeling formalisms and associated anal-
yses are illustrated for a temperature control system. The style is amenable for
use with existing tools for analyzing software and physical systems.

The are several directions for further research and development. Further work
is need, both theoretically and in implementation, for maintaining consistency
among different views. We are currently exploring the issue of consistency from
three perspectives: how to specify projections so that views can be automatically
constructed from the detailed model, rather than done by hand as they are now;
how to manage structural consistency so that changes in one view are reflected
in the other views; and how to manage semantic consistency, so that the analysis
and properties defined in one view can inform the analyses in other views.

Acknowledgments

This work was supported in part by National Science Foundation (NSF) under
grant no. CNS0834701 and by Air Force Office of Scientific Research (AFOSR)
under contract no. FA9550-06-1-0312.

References

1. MapleSim. http://www.maplesoft.com/products/maplesim/index.aspx.

2. MARTE. http://www.omgmarte.org/.

3. Modelica. http://www.modelica.org/.

4. Simscape. http://www.mathworks.com/products/simscape/.

5. SysML. http://www.sysml.org/.

6. ISO/IEC Standard for systems and software engineering - Recommended practice
for architectural description of software-intensive systems. ISO/IEC 42010 IEEE
Std 1471-2000 First edition 2007-07-15, 2007.

7. R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans-
actions on Software Engineering and Methodology, July 1997.

8. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley, second edition edition, 2003.

9. S. S. Bhattacharyya, E. Cheong, and I. Davis. Ptolemy II heterogeneous concurrent
modeling and design in java. Technical report, 2003.

10. A. Bhave, D. Garlan, B. Krogh, A. Rajhans, and B. Schmerl. Augmenting software
architectures with physical components. In Proceedings of the Embedded Real Time
Software and Systems Conference (ERTS2 2010), 19-21 May 2010.

16 Bhave et al.

11. P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and
J. Stafford. Documenting Software Architectures: Views and Beyond. Addison-
Wesley, 2002.

12. G. Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In Fifth
International Workshop on Hybrid Systems: Computation and Control (HSCC),
Lecture Notes in Computer Science 3414, pages 258–273. Springer-Verlag, 2005.

13. S. W. G. Hoffman and C. Tomlin. Quadrotor helicopter trajectory tracking control.
In Proc. of the AIAA Guidance, Navigation, and Control Conference, 2008.

14. D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural description of
component-based systems. In G. T. Leavens and M. Sitaraman, editors, Foun-
dations of Component-Based Systems, pages 47–68. Cambridge University Press,
2000.

15. D. Garlan and B. Schmerl. Architecture-driven modelling and analysis. In
11th Australian Workshop on Safety Related Programmable Systems, SCS’06, vol-
ume 69. Conferences in Research and Practice in Information Technology, 2006.

16. P. Gawthorp. Bond Graphs and Dynamic Systems. Prentice Hall, 1996.
17. D. Giannakopoulou and J. Magee. Fluent model checking for event-based systems.

In 11th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, 2003.

18. T. A. Henzinger. The theory of hybrid automata. In 11th Annual IEEE Symposium
on Logic in Computer Science, LICS’96, pages 278–292. IEEE Computer Society
Press, 1996.

19. C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
20. D. Jeltsema and J. M. A. Scherpen. Multidomain modeling of nonlinear networks

and systems. Control Sytems Magazine, Aug 2009.
21. P. Kruchten. The 4+1 view model of architecture. IEEE Software, 2(6):42–50,

1995.
22. J. Magee and J. Kramer. Concurrency: State Models and Java Programming,

Second Edition. Wiley, 2006.
23. Medvidovic, Nenad, Taylor, and R. N. A classification and comparison framework

for software architecture description languages. tse, 26(1), 2000.
24. D. Perry and A. Wolf. Foundations for the study of software architecture. In ACM

SIGSOFT Software Engineering Notes, volume 17(4), 1992.
25. T. A. H. Rajeev Alur, Costas Courcoubetis and P.-H. Ho. Hybrid automata: An

algorithmic approach to the specification and verification of hybrid systems. Hybrid
Systems LNCS, 736(4):209–229, 1993.

26. A. Rajhans, S.-W. Cheng, B. Schmerl, D. Garlan, B. H. Krogh, C. Agbi, and
A. Bhave. An architectural approach to the design and analysis of cyber-physical
systems. In Third International Workshop on Multi-Paradigm Modeling, Denver,
Oct 2009.

27. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

28. TOGAF. Developing architectural views. http://www.opengroup.org/architecture/togaf8-
doc/arch/chap31.html.

