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Abstract—Cyber-physical systems (CPS) are heterogeneous, because
they tightly couple computation, communication and control along with
physical dynamics, which are traditionally considered separately. Without
a comprehensive modeling formalism, model-based development of CPS
involves using a multitude of models in a variety of formalisms that
capture various aspects of the system design, such as software design,
networking design, physical models, and protocol design. Without a
rigorous unifying framework, system integration and integration of the
analysis results for various models remains ad hoc. In this paper, we
propose a multi-view architecture framework that treats models as views
of the underlying system structure and uses structural and semantic
mappings to ensure consistency and enable system-level verification in
a hierarchical and compositional manner. Throughout the paper, the
theoretical concepts are illustrated using two examples, a quadrotor and
an automotive intersection collision avoidance system.

I. INTRODUCTION

MODEL-BASED development refers to the use of computa-

tional and formal models in the system design process. The

goal is to reduce costly testing and redesign: catching errors in models

is significantly cheaper than finding them in the final system or even

in prototype implementations. Model-based development of complex

cyber-physical systems (CPS) involves creating models for a variety

of different design perspectives, including computation and software

design, communication and networking design, design of the physical

dynamics, protocol design, and control design. Different modeling

and analysis tools are well-suited for some of these aspects but not

others. For control applications, control laws are typically derived

and initially evaluated using control-oriented models, in which details

of the implementation and the physical dynamics are simplified or

neglected. These details are usually modeled and evaluated using

other formalisms and tools. Heterogeneity of those models poses

challenges to assessing the performance and correctness of the CPS

as a whole.

In our prior work (summarized in Sec. III), we introduced the

concept of architectural views for CPS to support model-based devel-

opment with heterogenous models, and demonstrated how mappings

between the views can ensure the models are structurally consistent.

Formal verification of safety-critical CPS using heterogeneous models

requires richer semantic support, however, that goes beyond the

semantics enforced by architectural structure. In this paper, we

propose a framework to provide this support based on behavioral

semantics to support heterogeneous multi-model development of CPS

within a multi-view architectural framework.

To motivate the discussion, we consider two CPS examples. The

first example is the Stanford Testbed of Autonomous Rotorcraft for

Multi-Agent Control (STARMAC) [1], which is a quadrotor platform

developed to test algorithms that enable autonomous operation of
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Fig. 1. Multi-domain models of the STARMAC quadrotor.

aerial vehicles. Fig. 1 depicts heterogeneous models of the quadrotor

from four different design domains: a signal-flow model of the

closed-loop feedback system for the vehicle, used for stability and

performance analysis; an equation-based physical model to study

the open-loop dynamic response of the vehicle to external forces

and torques; a process algebra model of the onboard controller

software, used to verify certain safety conditions; and a hardware

model of the electronic units and their interconnection, used to

study trade-offs between specifications and system-level performance.

Each of these models describes the same underlying vehicle, so the

assumptions made in each model about the structure and properties

of the quadrotor must be consistent with the complete system in

some way. The notion of structural consistency makes it possible to

trust analysis results obtained from each model separately and use

the analysis results from each model as assumptions in other models.

The structural richness of the STARMAC example helps illustrate the

application of structural consistency.

The other example is a cooperative intersection collision avoidance

system for stop-sign assist (CICAS-SSA), illustrated in Fig. 2(a),

which aims to augment human judgment about safe gaps in oncoming

traffic at stop-sign-controlled intersections [2]. Such systems involve:

sensing for the heading of the oncoming vehicles; communication of

these readings over networks to a decision system; and computation

of safe gaps based on the physical dynamics of the vehicles and

speed limits. In addition, there’s also empirical information about

the time required to alert and warn drivers in time for them to

respond, driver behavior of acceptance and rejection of traffic gaps

for different demographics, and the suitability of the systems for

different intersection geometries [3], [4], [5]. There is no universal

modeling framework that captures everything that is to be modeled

for such a system, and even if there were, the analysis of such an
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(a) Illustration of CICAS-SSA. (b) A collection of models for CICAS-SSA.

Fig. 2. Cooperative Intersection Collision Avoidance System for Stop-Sign Assist (CICAS-SSA) and a collection of models for it.

all-inclusive model would not be tractable. As a result, one needs to

decompose the underlying system into semantically different models,

shown in Fig. 2(b), and analyze them separately. The semantic

diversity of CICAS-SSA models helps demonstrate our approach to

heterogeneous verification.

The need to use heterogeneous models and their analysis together

towards correct system design presents a unique set of challenges.

Lack of a system-level representation makes system integration an

ad hoc and error prone activity. Formal verification of the overall

safety-critical system without a comprehensive modeling formalism

leads to the question: How can verification results from the different

formalisms be combined to infer system-level properties? Complex

systems are designed by composing subsystems and abstractions need

to be made across heterogeneous modeling formalisms to make the

analysis tractable. Each model represents some aspect of system

design while occluding others by making simplifying assumptions

that are often undocumented and have no supporting representation

or are captured informally at best.

To address these issues, we present an architectural framework

for the heterogeneous model-based development of CPS. We begin

by reviewing related work in Sec. II. We then present our archi-

tectural framework in three parts: (i) a summary of our work on

the architecture-centric approach to consistent design of CPS in

Sec. III; (ii) the development of behavior semantics for addressing

semantic heterogeneity and its use for multi-model hierarchical and

compositional heterogeneous verification in Sec. IV–VI; and (iii) a

unified framework that combines the multi-view structural analysis

and multi-model semantic analysis, as presented in Sec. VII. Sec. VIII

summarizes the contributions of the paper and outlines some direc-

tions for future work. The theoretical concepts are illustrated on the

CICAS-SSA and STARMAC examples.

II. RELATED WORK

In the following review, we broadly classify the related work into

the following three categories: (i) work on tools to support multi-

model system development; (i) work on architectures for complex

software systems and their extensions to CPS; and (iii) work on

formal semantic analysis of CPS.

A. Multi-model development

The field of computer automated multi-paradigm modeling is

introduced in [6], and the current issues and promising approaches are

outlined. System Architecture Virtual Integration is an architecture-

centric approach to the analysis of system models with respect to

quality attributes, such as performance, safety, and reliability [7],

but it lacks a uniform way to reason about heterogeneous model

semantics. NAOMI is an experimental platform for enabling multiple

heterogeneous models to work together [8], but it does not define

consistency between models and the system, nor is there is a mech-

anism to define physical architectural elements. Ptolemy II enables

simulation of heterogeneous models by integrating multiple “models

of computation” hierarchically into a single simulation model in

an actor-oriented formalism [9]. SysWeaver [10] is a model-based

development tool that includes a flexible code generation scheme

for distributed real-time systems, however it lacks support for a

physical plant modeling view and a mechanism to define new views

or relations between them.

Multiple models are also supported by model transforma-

tion/translation using meta-models [11], [12], [13], a suitable in-

terchange format [14], [15] or the use of translation schemes [16].

The Vanderbilt model-based prototyping toolchain supports a sub-

set of Simulink/Stateflow models with periodic execution, software

architecture and hardware platform modeling, but has neither sup-

port for additional views (e.g., physical or verification models),

nor a notion of consistency between additional system views. The

approach in semantic anchoring [16] to transform between system

models concentrates on the specification of the dynamic semantics

of domain-specific modeling languages using a small set of behavior

abstractions. The Metropolis design framework [17] and its proposed

extension Metro II [18] use platform-based design methodology

for multi-model system design by orthogonalizing concerns such

as communication-computation, function-architecture and behavior-

performance.

The ModelicaML profile aims to integrate UML and Modelica for

modeling and simulation of system requirements and design [19].

Similar work has been done for UML and Simulink [20]. There is

also an ongoing effort to integrate Modelica with SysML (a UML

2.0 profile) for physical domain modeling [21]. However, in all these

approaches, there is not an easy way to incorporate physical dynamics

models into the overall framework. For example, SysML flow ports

do not have a well-defined semantics to model flows of physical

quantities (energy or torque). In addition, there are no consistent rules

or guidelines on how to define relationships between multiple views

in any of these frameworks.

These approaches focus on addressing specific sets of issues in
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supporting multi-model system development of CPS. Our approach

is to develop a general unifying framework for supporting not only

multi-model design, but also analysis and verification of CPS.

B. Software Architecture

Over the past decade software architecture has emerged as one

of the primary techniques for disciplined engineering of large-scale

software systems. A software architecture (SA) typically models a

system as a graph of components and connectors, in which the

components represent principal computational elements of a system’s

run-time structure and the connectors represent the pathways of

communication between components [22], [23]. These elements are

annotated with properties that characterize their abstract behaviors

and allow one to reason and make tradeoffs at a systems level about

qualities such as performance, reliability, security, and cost.

Given the importance of SA, there has been considerable research

and development in: notations to support architectural specification,

often called Architecture Description Languages (ADLs): and tools to

support their analysis and realization as code [24], [25]. Standardized

notations, such as UML 2.0 [26], SysML [27], and AADL [28]

provide a modeling vocabulary of components and connectors, as well

as certain classes of properties. Additionally, a number of researchers

have investigated the modeling of architectural behavior, for example

as protocols characterized by process algebras or state machines [29],

[30]. These notations are supported by tools that provide graphical

editing and viewing, hierarchical development (in which components

may be refined as more detailed architectures) [31], checking for

component compatibility or substitutability [32], and evaluation of

quality attributes such as performance, reliability, and security [25].

SAs also support reuse of design expertise and code infrastructure.

In many cases an architecture of a system fits within a common

family or design pattern, referred to as an architectural style, which is

typically defined as a set of component and connector types, together

with constraints that prescribe how elements can be composed [22].

Some ADLs allow one to define architectural styles, develop systems

in that style, and provide tools for checking whether a system

is compliant with a given style [33]. NASA has developed an

architectural style for space systems, in which components represent

sensors, actuators, state variables, and estimators, and then used this

to model space rovers for Mars [34].

In principle, SA promises a natural solution path for providing

a uniform modeling approach that supports the design and analysis

of CPS. First, through high-level, hierarchical component-oriented

models, it can provide representations that reduce complexity through

abstraction and encapsulation. Second, through SA’s uniform treat-

ment of components, whether embodied by software or hardware,

it can support integration of systems that combine physical and

computational elements. Third, as we discuss later, it can form the

basis for understanding the dependencies between various separable

models that focus on partial analysis of the full system. Indeed,

SA has been applied effectively to numerous embedded and control

systems. ADLs such as Meta-H and AADL have been used to model

avionics, automotive and other control systems [35].

There are two fundamental shortcomings of current architecture

modeling capabilities that limit their potential to fully address the

engineering problems of large-scale, heterogeneous CPS: (i) limited

vocabulary to represent physical elements and their interactions;

and (ii) inadequate ways to support consistency relations between

different (possibly heterogeneous) architecture views of the same

system. The first limitation prevents the creation of a complete

architectural representation of the system that includes the description

of the physical plant(s) being controlled by the embedded controller

software. The second limitation makes it difficult to share and

maintain consistent information between system models that are

created and analyzed in different design domains. Our work on cyber-

physical system architectures that addresses these shortcomings is

summarized in Sec. III.

C. Analysis and Verification

For model-based verification, heterogeneous abstractions have been

used for specific pairs of formalisms, such as hybrid abstractions of

nonlinear systems [36], [37], linear hybrid automata abstractions of

linear hybrid systems [38], discrete abstractions of hybrid systems

[39], [40], [41] and continuous abstractions of hybrid systems [42].

Our objective is to create a general framework for abstraction that

applies to any set of heterogeneous formalisms.

Heterogeneous reactive systems can be compared and composed

using the tagged-signal semantics [43], [44]. Julius creates a behav-

ioral framework for modeling control as a behavior interconnection

problem [45]. These approaches use system trajectories or behaviors

as a mathematical framework for creating relations between the

semantics of different modeling formalisms. In a similar spirit, we

use mathematical relations and functions between behavior domains

as the semantic mappings between heterogeneous models. In contrast

to Julius’s approach of incorporating behaviors in the definition of

models, we see behaviors as the semantic interpretation of systems,

which allows us to observe behaviors in different domains. This idea

is similar to the one proposed in [46], where timed and time-abstract

traces serve as different semantics for the same hybrid automaton.

Contract-based design [47] and the use of vertical and horizontal

contracts for abstraction and composition, similar to our hierarchical

and compositional heterogeneous verification, has been presented in

the context of CPS [48] and analog mixed-signal circuits [49].

For combining verification or analysis results across heterogeneous

models, ontologies have been used as a knowledge-management

approach. Lattice-based ontologies can be used to infer semantic

relationships between elements of heterogeneous models [50]. Kumar

et al. proposed an ontology-based approach for managing knowledge

gained from heterogeneous verification activities and for targeted

knowledge acquisition [51]. Rather than treating verification activ-

ities as knowledge to be combined, we use logical combination of

verification constructs to construct complex verification hierarchies.

In a similar spirit, the temporal logic of actions proof system deploys

a proof manager that breaks down a complex verification task

logically into proof obligations that are proved using theorem provers

and satisfiability-modulo-theories solvers [52], but this framework is

primarily aimed towards software systems, whereas our framework

supports more general (e.g., continuous, hybrid) dynamics and non-

deductive analysis methods. Verification architectures have been

developed to manage proofs by using high-level switching protocols

to verify an overall system property, and require that each mode

adhere to this high-level protocol [53], however the only supported

formalisms are communicating sequential processes, object-Z and

duration calculus.

Compositional reasoning is essential for multi-model analysis and

verification. Some methods are defined in the context of a single for-

malism, such as such as assume-guarantee reasoning, with abstraction

defined by language inclusion [54] and simulation relations [55], [56],

or compositional methods based on deduction [57]. Another example

is the behavior-interaction-priority framework for embedded software,

which uses structured interaction invariants to support compositional

analysis, but only for transition system models [58]. Our objective is

to develop a general framework that elucidates the basic conditions

for compositional abstraction between any pair of heterogeneous

formalisms.



4

In summary, the existing approaches towards multi-model design

and analysis of CPS focus on specific sets of problems, but fall short

of providing a comprehensive solution. Some provide a unified set

of modeling formalisms, but no formal verification; others support

formal verification for specific formalisms, but not a general frame-

work for managing formal models and their analysis results. In the

following sections we develop a framework that supports the unified

structural representation of CPS and its constituent models, creates

a mechanism for managing the models and ensuring consistency

between them and the underlying system, and supports heterogeneous

formal analysis of the system using the analysis of the individual

models in a principled manner.

III. CYBER-PHYSICAL SYSTEM ARCHITECTURES

This section gives an overview of our architecture-centric approach

to design and analysis of CPS with citations to our previous work

in this area. We present an extensible architectural style for enabling

architectural modeling of CPS and architectural view consistency for

comparing the structure and semantics of the model associated with

a particular view to the common system architecture.

A. An Architectural Style for CPS

The challenge in defining an architectural style for the physical

domain of CPS is to strike a balance between specificity and gener-

ality. Architectural models should not have all the details required

for a full simulation of the physical dynamics as they are often

unnecessary at the architectural level. At the same time, the archi-

tectural components and connectors should correspond to intuitive

notions of physical dynamics in the same way cyber components

and connectors correspond to elements of computational systems.

To achieve this balance, we introduce components and connectors

based on a behavioral view of open and interconnected physical

systems, as defined by J. C. Willems [59]. This provides a domain-

independent perspective, including the ability to represent interactions

between different physical domains and the possibility to specify

system properties such as power flow and energy conservation laws.

In the behavioral approach, laws that govern physical phenomena

impose relations on a component’s variables, while interconnection

means that variables are shared between the connected components,

i.e., component behaviors are coupled via their common variables.

The base architecture (BA) of a cyber-physical system is an

instance of the CPS architectural style and provides the reference

structure for all the models used for design and verification. It

contains the set of system elements that are related to the analyses

carried out in each model, as well as the elements that are common

between the models. The BA should contain enough detail to describe

the nature of the information exchanged and the physical quantities

flowing between components, as well as component connectivity and

coupling between physical variables represented by connectors.

Fig. 3 illustrates the use of the CPS style to model the BA

of the quadrotor in our custom architecture design environment

called AcmeStudio [33]. On the cyber side, each controller (attitude,

position, and ground station) is mapped to a separate computation

component that implements the control algorithm. The communi-

cation of setpoints from a higher-layer controller to a lower-layer

controller is modeled as a send-receive connector. The periodic

relaying of vehicle state from the lower control layer to the higher

layer is modeled as a publish-subscribe connector. This illustrates the

use of distinct connector types to represent different communication

patterns between the same components. The vehicle frame is modeled

as a rigid-body component, whose mass and moment of inertia are

Fig. 3. Base Architecture of STARMAC in AcmeStudio.

affected by the forces and moments acting at its ports, according to

the dynamic equations of the quadrotor.

Each rotor and motor actuator is modeled as a single electrome-

chanical transducer called Act, containing an electrical port and two

mechanical ports, one each for the translational and rotational do-

mains. The component models the conversion of input motor voltage

to an output thrust (force) and torque acting on the vehicle frame.

As we refine the architecture, this composite component can have

sub-structure, where the motor and rotor are separate components,

with a torque connector between them. Each Act is connected to the

vehicle frame by two physical coupling connectors, one for force

balance and one for moment balance. This models the action and

reaction phenomenon between each rotor assembly and the vehicle

frame. The drag force is described as a dissipative component, whose

magnitude depends on the wind velocity and the aircraft velocity,

among other parameters. The complex empirical relationship of drag

force to the velocities at its ports is annotated as a behavior property

of the component. Gravitational force is modeled as a flow source

component, since it exerts an independent force on the airframe. It

is connected to the vehicle frame by a physical signal connector.

Further details about the CPS architectural style and its application

to the STARMAC are given in [60].

Fig. 4 shows an architectural model of the CICAS-SSA. It has

a roadside safety system as a computation component that receives

sensor readings from a highway sensing system, a physical-to-cyber

transducer component that senses the physical coordinates of the

vehicles on the major road, and a physical component that models

the vehicles on the major road. The roadside safety system sends

the readings to an encapsulated cyber-physical component of the

subject vehicle (SV). The insert in Fig. 4 shows the architectural
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sub-components that comprise the SV, namely an on-board safety

system for computing, a computation component; the driver-vehicle

interface (DVI), a cyber-to-physical transducer component; and the

SV drive train, a physical component that can have further sub-

structure not shown at this level. The SV driver is modeled as a

physical component that sees the alerts or displays on the DVI and

commands acceleration input to the SV drive train. The Department

of Transportation (DOT) network and vehicle-infrastructure interface

(VII) network provide additional data about the traffic flow, intersec-

tion geometry and other information to the road-side and on-board

systems.

Fig. 4. Base Architecture of CICAS-SSA.

B. Consistency for Multi-View Architectures

We observe that most models are composed of interacting com-

ponents, with the semantics of the interactions defined by (implicit

or explicit) connectors. For certain analysis domains, the component-

connector structure is obvious. For example, Simulink models used

for control analysis consist of functional components interacting

through connectors with data-flow semantics. Modelica models con-

sist of physical components interacting through connectors with

acausal interconnection semantics. Each verification model has a

structure that can be viewed as an architecture with syntax and

semantics defined by the particular formalism that the model is

created in. We have created rules for the creation of a model’s

architecture for the common analysis domains used for CPS, as

described in [61].

An architectural view for a particular analysis domain is a mecha-

nism to relate the architecture of the associated model to the system’s

common BA. In this context, well-defined mappings between a

view and the BA are used to identify and manage semantically

equivalent elements (and their connections) between the associated

model and the underlying system. Hence, architectural views are

an abstraction that represent the assumptions made in the model

about the system’s structure and connectivity. Views facilitate the

separation of concerns during system design. Although views are

usually constructed separately, the set of all system views must be

related and consistent (in some sense) with the overall architecture,

since each view contains a description of the same underlying system.

Since an architecture model represents the system as a graph

of components and connectors, the problem of checking for the

consistency between a view and the BA can be reduced to checking

for the existence of a graph morphism between their associated

component-connector graphs. We use undirected, typed graphs to

model a system’s architecture. Associating types with elements is

necessary to distinguish between architectures that are topologically

identical but represent semantically different systems. For example,

one star-topology architecture might represent a mainframe computer

being used by multiple thin clients, while another might represent

the centralized control of several unmanned aerial vehicles by a

single ground station. Mapping architectures into graphs allows us

to leverage well-studied tools in graph theory that evaluate the

topological similarity between two structures.

View consistency means that an architectural view satisfies the

structural and semantic constraints imposed by components and

connectors in the system’s BA. A view is consistent with the BA if

there exists an appropriate graph morphism between the typed graphs

of the view and the BA. View consistency ensures that the elements

in the associated model adhere to the connectivity constraints and

physical laws present between elements in the BA. The use of typed

graphs allows us to check for a limited notion of semantic consistency

by capturing the properties of elements in the view and BA as

labels of the nodes in the graphs. The graph matching algorithm

automatically analyzes the constraints defined between the labels

of corresponding nodes in the view and BA graphs as part of the

view consistency check. Details of the application of our to the four

STARMAC models and the view consistency tools implemented in

AcmeStudio are given in [62].

C. The Need for Richer Semantics

Multi-view architectural modeling provides a rigorous framework

for creating structurally consistent representations and managing

heterogeneous model-based development of CPS, but safety-critical

CPS also need formal verification of the heterogeneous models in

order to guarantee correctness of the underlying systems. Hence,

richer semantic support is needed in addition to the semantics en-

forced by the architectural styles and consistent structural deployment

of functionality. For example, a sensing view of the CICAS-SSA

that analyzes measurement errors [3] looking only at the sensing

system component while ignoring others, a network simulation model

that studies communication delay between a road-side unit and an

intelligent vehicle [63] while ignoring the rest, a physical view that

models the physics of the car to model how fast it can move (a small

car vs. a truck), and an abstract verification view that models simple

overapproximated dynamics of the SV and the oncoming vehicles

and guarantees a safe intersection-entry strategy, can all have struc-

turally consistent deployment of functionality. Correctness of these

individual models along with structural consistency is not enough

to conclude correctness of the overall system, however. A richer

semantic support for dealing directly with the models themselves

is necessary in addition to the structural mappings between their

architectural abstractions.

The objective of this richer semantic support is to enable the associ-

ations between various heterogeneous models and their respective sets

of behaviors in suitable behavior formalisms. The framework needs

to be general enough to allow the use of different modeling and

specification formalisms, and different analysis methods and tools.

There needs to be support for combining verification results from

individual models in a meaningful way to reason about the correctness

of the overall system. Complex systems are usually composed of

smaller subsystems where different parts are often designed by

different engineers possibly at different times, so the framework

needs to support compositionality and distributed development in

order to draw conclusions about the system correctness from that of

the components in a distributed compositional manner. Additionally,

semantic assumptions and simplifications are made while constructing

models from particular perspectives that hide or abstract information

from other perspectives of the system. The framework needs the

ability to formally represent these assumptions and ensure system-

wide semantic consistency of these assumptions. The remainder of
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the paper develops the semantic support for heterogeneous formal

verification based on behavior semantics to address these issues.

IV. BEHAVIOR SEMANTICS FOR ADDRESSING HETEROGENEITY

A key challenge in using heterogeneous models to analyze the un-

derlying system is addressing the semantic heterogeneity, i.e., relating

the semantics of different models defined in different formalisms to

the underlying system. Our goal is to create a formal framework that

is independent of the specifics of any particular modeling formalisms,

yet works with every formalism. This section develops a framework

based on behavior semantics and their mappings.

A. Modeling Formalisms and Semantic Domains

A modeling formalism M is a set of models of a particular type.

Transition systems, hybrid automata, signal-flow models, acausal

equation-based models, and network models are some of the model-

ing formalisms used in CPS. A model M is an element of some

formalism M. Let B denote a behavior domain defined using

a given behavior formalism B. The behavior formalism could be

used to represent, for example, event traces, pairs of continuous

input-output signals, or hybrid trajectories, and a particular behavior

domain specifies a set of admissible behaviors defined using the

given behavior formalism. We create a framework using behavior

relations to support true semantic heterogeneity by allowing the use

of several different types of behavior formalisms for different models

and specifications [64].

Let JMKB denote the set of legal behaviors for a given model M

with semantics defined in a given behavior domain B in a suitable

formalism B. With model semantics defined in different behavior

domains possibly from different formalisms, we define behavior

relations as follows to create mappings between those behavior

domains.

Definition 1 (Behavior Relation): Given behavior domains B1 and

B2 in possibly different behavior formalisms B1 and B2, a behavior

relation is a set R ⊆ B1×B2 that associates pairs of behaviors from

the two sets B1 and B2.

For a subset of behaviors B′
1 ⊆ B1, let R(B′

1) denote the set of

behaviors in B2 associated with behaviors in B′
1, i.e., R(B′

1) =
{b2 | ∃b1 ∈ B′

1 s.t. (b1, b2) ∈ R}. Similarly, for B′
2 ⊆ B2,

let R−1(B′
2) represent the set of behaviors in B1 associated with

behaviors in B′
2, i.e., R−1(B′

2) = {b1 | ∃b2 ∈ B′
2 s.t. (b1, b2) ∈ R}.

This general yet mathematically precise definition supports a

variety of formalisms and enables a mechanism to capture the associ-

ations and assumptions made while constructing the different models.

For example, in case of CICAS-SSA, behavior relations could be used

to define how the hybrid traces in an abstract verification model, the

trajectories in a control-oriented signal-flow model and the evolution

of forces and torques in a physical model relate with the underlying

system behaviors and with each other. Note that these associations

are often problem-specific and they are already assumed informally

while creating these different models; and we facilitate writing them

out precisely.

We consider special cases of behavior relations that are also

functions, i.e., R ⊆ B1 × B2 s.t. (b1, b2) ∈ R and (b1, b
′
2) ∈ R

only if b2 = b′2. We call these behavior abstraction functions and

denote them as functions A : B1 → B2.

B. Heterogeneous Abstraction and Composition

For all but the most trivial cyber-physical systems, abstraction is

essential for making analysis and verification tractable. When inter-

preted over the same behavior domain B, a model M2 is an abstrac-

tion of a model M1, written M1 ⊑B M2, if JM1K
B ⊆ JM2K

B. Many

different forms of abstraction have been considered in the literature.

We focus on abstraction that corresponds to behavioral inclusion, for

example, language or trace inclusion. This mathematical definition

of a subset relation captures the notion of overapproximation, whose

interpretation could depend on the particulars of the behavior formal-

ism, e.g., in terms of language semantics, trace semantics, reachable

sets, and so on.

The following definition extends this notion to heterogeneous

behavior domains using mappings across the different domains to

enable the subset comparison.

Definition 2 (Heterogeneous Abstraction): Given behavior

domains B1, B2 and a behavior relation R ⊆ B1×B2, a model M2

is an abstraction of a model M1 through R, written M1 ⊑R M2, if

JM1K
B1 ⊆ R

−1(JM2K
B2).

This definition asserts that for every behavior in B1 of model M1,

the behavior relation R associates at least one corresponding behavior

in B2 of model M2. For example, given a detailed control-oriented

Simulink model, an abstract verification model, and a behavior

relation between their respective domains, this definition states that

we have an abstraction only when for each Simulink trajectory, there

is a corresponding abstract trace of the verification model.

When abstract and concrete models across different formalisms are

composed of smaller models of interacting components, our objective

is to associate the behaviors of component models in isolation with

those of the compositions, so that the analysis for the component

models can be used to reason about the compositions. We start with

a simple special-case scenario in which the semantics of component

models P and Q are defined in the same behavior domain. In this

case, we define the semantic composition of two component models

as follows.

Definition 3 (Semantic Composition): Given component models

P and Q from the same modeling formalism M with semantics

defined in behavior domain B, the composition P ||Q is a model in

M s.t.

JP ||QKB = JP KB ∩ JQKB. (1)

This definition of composition as the intersection of behavior sets

is consistent with the literature for composition using many but not

all behavior domains [45], [43], [44]. In particular, it requires the

semantics to allow variables to change arbitrarily if left unspecified in

the models. For a given modeling formalism M, syntactic techniques

may exist for creating a composition, e.g., construction of product

automata. We allow all such procedures to be used to define the

composition, so long as (1) holds.

In a more general scenario, the component models P and Q

can have different local behavior domains BP and BQ in behavior

formalism B. These local behavior domains have only the variables

pertaining to a specific component while excluding others. In such

a case, we need to lift the local semantics of the components to

common global behavior domains before we can compose them.

We begin by defining the relationship between behaviors in a global

domain and a local domain.

Definition 4 (Behavior Localization): Given a behavior formalism

B and two behavior domains B,B′ ∈ B, an onto function ↓ : B →
B′ (i.e., every element of B′ has at least one pre-image in B) is

called a (behavior) localization of domain B to domain B′.

Given a localization ↓ of B to B′, for b ∈ B, we will let b↓ be

a shorthand for ↓(b). The set-valued extension of localization can

be defined in the usual way. For b′ ∈ B′ we will let b′↑ denote

the set-valued function ↑ : B′ → 2B − {∅} defined by ↑(b′) =
↓−1(b′) = {b ∈ B|b↓ = b′}. We will call the function ↑ a (behavior)
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globalization of B′ to B. Note that b′↑ is always non-empty since

the localization function ↓ is onto.

Behavior localization and globalization are generally inferred from

relationships between models from given modeling formalisms and

associated definitions of the relationships between model primitives

and their semantic interpretations. Given the definitions of local-

ization and globalization of behavior domains, we define model

globalization as follows.

Definition 5 (Model Globalization): Given a global behavior do-

main B, a model P with its local behavior domain B′, and a behavior

localization function ↓ : B → B′, the (model) globalization of P is

any model PG s.t. JPGKB = JP KB
′

↑.

For a given modeling formalism M, syntactic approaches for glob-

alization may exist, e.g., addition of self loops for newly-added event

labels for discrete transition systems, or addition of state variables

with unconstrained dynamics for continuous dynamic systems. We

allow the use of all such syntactic pre-processing procedures that

lead to models with the correct set of behaviors JP KB
′

↑ before

composition.

The following definition generalizes the notion of semantic com-

position from Def. 3.

Definition 6 (Globalized Semantic Composition): Given a global

behavior domain B, component models P and Q with their cor-

responding local behavior domains BP and BQ, and behavior

localizations ↓P : B → BP and ↓Q : B → BQ, the globalized

semantic composition of P and Q in the global behavior domain

B, denoted by P ||GQ is the semantic composition of models PG

and QG, which are the globalizations of P and Q, respectively, i.e.,

P ||GQ = PG||QG.

While syntactic procedures can produce different model globaliza-

tions, they still yield semantically equivalent compositions in terms

of sets of behaviors.

C. Example

Consider the task of establishing the collision freedom of CICAS-

SSA for one oncoming vehicle, called the principal other vehicle

(POV) and one subject vehicle (SV) waiting at the stop sign, as

shown in Fig. 5. The collision freedom of each POV and each SV is

an integral part in establishing the correctness of the overall system.1

The POV appears in the sensing range, continues to approach the

intersection, enters the intersection and eventually clears it. The SV

can either go straight or turn right to merge into the POV’s path. Once

they crosses the intersection, we no longer treat the POV or the SV

to be relevant as next vehicles take their place. Assuming the road

coordinate along the POV path is X and those along the straight and

right-turn paths of the SV are Y and Z, the potential conflict area in

and adjacent to the intersection is shown with dimensions depicted

by the bold line segments. Fig. 5 also shows typical intersection

geometry parameters such as the width of a highway lane, the range

of when a vehicle is first detected, and a conservative estimate of

when it is too close (300m) assuming it travels at highway speeds

between 20m/s and 30m/s.

Fig. 6 shows a hybrid-automaton model M0 for the system in Fig 5.

The model shows a parallel composition of POV and SV component

models. The continuous dynamics of the POV can be represented by

a differential inclusion (or a hybrid automaton with one location and

no transitions) based on highway speed limits. The SV has a choice

of entering the intersection or merging into the traffic only if it is

safe to do so. It is forced to stay stopped if unsafe or can decide

to stay stopped by choice. Once it enters the intersection or merges

1The overall system verification for CICAS-SSA is presented as a case
study in [65].

X

Y

l 4.5m

SV

POV
Z120m

far close inInt

300m

400m-420m

Fig. 5. An instance of the CICAS-SSA with one near-side oncoming lane
with one POV.

into the traffic, it continues to drive with some minimum bounds of

acceleration along either y or z and eventually clears the conflict

zones. Because we do not care about what happens after either car

clears the intersection, we ignore the corresponding dynamics after

clearing the intersection by not updating the dynamics for SV and

by choosing appropriate invariant for POV.

The behavior formalism of choice for this model is hybrid trajec-

tories, with local behavior domains for the component models being

the set of all 1-d trajectories in the variable x and the set of all 5-d

hybrid trajectories in the variables x, y, vy , z and vz , which stand for

POV position and SV position and velocities while going straight and

merging right. Parallel composition of hybrid automata can be used

to form a composition, after addition of unrestricted dynamics along

y, vy , z and vz serves as the globalization for the POV component. In

the next two sections, we present the hierarchical and compositional

heterogeneous verification of this model.

In summary, this section develops a general semantic framework

for associating behaviors across different domains. Behavior relations

serve as mappings between domains at different levels of abstraction,

and localization/globalization mappings serve as mappings between

local and global semantics. The local semantics defines the meaning

of the component models when considered in isolation, and the global

semantics defines the meaning of the whole system models when

the components are composed to a system. Next we exploit these

semantical mappings to develop hierarchical heterogeneous verifica-

tion across different levels of abstraction in Sec. V, and compositional

heterogeneous verification across individual component models at a

given level of abstraction in Sec. VI.

V. HETEROGENEOUS VERIFICATION

For multi-model heterogeneous verification of CPS, the different

models involved are verification models, and the system designer’s

objective is to use the models and design specifications to reason

about the correctness of the underlying system.

A specification S in a specification formalism S is an indirect

representation that captures what the system can or cannot do,

typically without any implementation details. There is no restriction

on what specification formalism can be used. Specifications could be

written in, for example, various temporal logics, Kripke structures,

automata, sets of unsafe states to be avoided, or even in English

language, so long as their semantic interpretation is clear in terms of

a given behavior domain in the associated behavior formalism.

The semantic interpretation of S in a behavior domain B, denoted

by JSKB , is defined as the set of all behaviors in B for which the

specification is satisfied. When semantically interpreted over the same

set of behaviors B, a (stronger) specification S2 is said to imply a

(weaker) specification S1, written S2 ⇒B S1 if JS2K
B ⊆ JS1K

B .

This simply asserts that any behavior that satisfies S2 also satisfies

S1.

The following definition extends this notion to heterogeneous

behavior spaces using behavior relations.
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waiting

x ≤ −300

stopped

conflict y

y ≤ 4.5

clear y

ẏ = 0; v̇y = 0

x ≥ −300

x < −300

y ≥ 4.5

conflict z

z ≤ 170

clear z
z ≥ 170

driving

x ≤ 0

ẋ ∈ [20, 30]

y(0) = 0; vy(0) = 0x(0) ∈ [−420,−400]

||
ż = 0; v̇z = 0

z(0) = 0; vz(0) = 0

x < −300

ẏ = vy; v̇y ∈ [0.25, 5]

ż = 0; v̇z = 0

ẏ = 0; v̇y = 0
ż = vz; v̇z ∈ [2, 5]

ẏ = 0; v̇y = 0

ż = 0; v̇z = 0

ẏ = 0; v̇y = 0

ż = 0; v̇z = 0

ẏ = 0; v̇y = 0

ż = 0; v̇z = 0
POV SV

Fig. 6. A hybrid automaton model M0 for CICAS-SSA.

Definition 7 (Heterogeneous Implication): Given behavior dom-

ains B1, B2 and a behavior relation R ⊆ B1 × B2, we say that

specification S2 implies specification S1 via R, written S2 ⇒R S1,

if

R
−1(JS2K

B2) ⊆ JS1K
B1 .

This definition requires that if a behavior b1 ∈ B1 is associated

through R with a behavior in b2 ∈ B2 that satisfies S2, then b1
satisfies S1.

In a given behavior domain B, a model M entails a specification

S, written M |=B S, if JMKB ⊆ JSKB . When true, this simply

asserts that the set of behaviors of the model M do not violate the

set of safe behaviors allowed by the specification S. To establish this

type of entailment, formal approaches such as reachability analysis

and theorem proving, or semi-formal approaches like systematic

state-space exploration, need to be used. The following proposition

states general conditions under which one can perform heterogeneous

verification.

Proposition 1 (Heterogeneous Verification): Given two behavior

domains B0 and B1 in behavior formalisms B0 and B1, models M0

and M1 in modeling formalisms M0 and M1, specifications S0 and

S1 in specification formalisms S0 and S1, and a behavior relation

R ⊆ B0 × B1, if M0 ⊑R M1, M1 |=B1 S1 and S1 ⇒R S0, then

M0 |=B0 S0.

Proof: From M0 ⊑R M1, we have

JM0K
B1 ⊆ R

−1(JM1K
B1)

(From M1 |=B1 S1) ⊆ R
−1(JS1K

B1)

(From S1 ⇒R
S0) ⊆ JS0K

B0 .

Therefore, M0 |=B0 S0.

There are two natural ways of using multiple models and specifi-

cations together. In one, models individually are abstractions of the

underlying system and the conjunction of their associated specifi-

cations needs to imply the system specification. Alternatively, each

model may represent only a subset of the behaviors of the underlying

system, and the collection of models provides an abstraction of the

complete system. In this second case, the specification for each model

needs to imply the specification of interest for the underlying system

for the set of behaviors covered by the model. We develop these two

notions in the context of heterogeneous verification.

1) Conjunctive Multi-Model Heterogeneous Verification: We first

consider the case where each model is a heterogeneous abstraction

of the underlying system. In this case, we need to ensure that

the specifications checked against each model together imply the

specification of the underlying system. The following definition

makes this notion formal.

Definition 8 (Conjunctive Heterogeneous Implication): Given

system behavior domain B0, behavior domains Bi and behavior

relations Ri ⊆ B0 × Bi, i = 1, . . . , n, specifications Si for

i = 1, . . . , n conjunctively imply the system specification S0 if
⋂

i

R
−1
i (JSiK

Bi) ⊆ JS0K
B0 .

This definition allows the individual specifications Si to not imply

S0, but their conjunction (intersection of the allowed behaviors) is

required to be stronger than S0.

Proposition 2 (Heterogeneous Conjunctive Analysis): For a sys-

tem model M0 with a behavior domain B0 and specification S0,

given models Mi with the corresponding behavior domains Bi, spec-

ifications Si and behavior relations Ri ⊆ B0 ×Bi, if M0 ⊑Ri Mi,

specifications Si conjunctively imply S0, and Mi |=
Bi Si for each

i = 1, . . . , n, then M0 |=B0 S0.

Proof: From M0 ⊑Ri Mi for each i, we have

JM0K
B0 ⊆

⋂

i

R
−1
i (JMiK

Bi)

(since Mi |=
Bi Si) ⊆

⋂

i

R
−1
i (JSiK

Bi)

(Conj. Het. Implication) ⊆ JS0K
B0 .

Therefore, M0 |=B0 S0.

2) Disjunctive Multi-Model Heterogeneous Verification: Now we

consider the case where different models are built to represent

different subsets of behaviors of a system. This is typically useful

when there are different behaviors in different operating regimes best

modeled by different models, where neither one fully represents the

whole set of behaviors of the system, but their union does. This notion

is made formal by the following definition.

Definition 9 (Model Coverage): For a system model M0 with a

behavior domain B0, given a set of models Mi with corresponding

behavior domains Bi and behavior relations Ri ⊆ B0 × Bi,

models Mi, i = 1, . . . , n cover M0 if there exists a partition
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{B1
0 , B

2
0 , . . . , B

n
0 } of JM0K

B0 s.t. ∀i = 1, . . . , n

B
i
0 ⊆ R

−1
i (JMiK

Bi).

This definition requires that every behavior of the underlying system

M0 be accounted for by at least one model.

Lemma 1: If models Mi cover M0 through Ri, i = 1, . . . , n, we

have

JM0K
B0 ⊆

n
⋃

i=1

R
−1
i (JMiK

Bi).

Proof: From the definition of partition, we have

JM0K
B0 =

n
⋃

i=1

B
i
0

(Def. 9) ⊆
n
⋃

i=1

R
−1
i (JMiK

Bi).

In the disjunctive case, no model is a proper abstraction of the

underlying system, only all models together cover it. Hence, in order

to make sure that a specification holds for the underlying system

we need to verify that each of the disjunctive models satisfies that

specification.

Proposition 3 (Heterogeneous Disjunctive Analysis): For system

model M0 with a behavior domain B0 and specification S0, given

models Mi with the corresponding behavior domains Bi, specifica-

tions Si and behavior relations Ri ⊆ B0×Bi, if each specification Si

heterogeneously implies S0, models Mi cover M0, and Mi |=
Bi Si

for each i = 1, . . . , n, then M0 |=B0 S0.

Proof: From Lemma 1, we have

JM0K
B0 ⊆

⋃

i

R
−1
i (JMiK

Bi)

(since Mi |=
Bi Si) ⊆

⋃

i

R
−1
i (JSiK

Bi)

(Het. Implication) ⊆ JS0K
B0 .

Therefore, M0 |=B0 S0.

Finally, we note that the conjunctive and disjunctive analysis

constructs can be nested arbitrarily. For example, the j-th conjunctive

verification subtask Mj |=Bj Sj can be broken down disjunctively

into its subtasks Mji |=Bji Sji by creating new models that cover

Mj and specifications that imply Sj . Thus, using the nesting of

conjunctive and disjunctive constructs, any arbitrary propositional

logical breakdown of a system verification task can be achieved. This

is illustrated in an example in the following subsection.

A. Example

Consider the following safety verification problem for the CICAS

model M0 from Fig. 6. A safety violation (potential collision) occurs

if by the time POV enters the intersection, SV is still in the conflict

zone. The absence of this violation can be written as a temporal logic

specification S0 : � ¬ ((x == 0 ∧ 0 < y < 4.5) ∨ (x == 0 ∧ 0 <

z < 170)). The objective is to show that M0 satisfies S0.

1) Disjunctive analysis: We note that the SV has to be safe

irrespective of whether it is crossing or merging into the lane.

We can model these behaviors individually and verify their safety

independently in a disjunctive verification construct. Fig. 7 shows a

model M1 of the system where SV is only allowed to intersect the

traffic. A similar model M2 can be constructed for the merging case.

In place of the behavior domain B0 of model M0 as the class of all

5-d hybrid traces, the behavior domains B1 and B2 for models M1

and M2 are classes of all 3-d hybrid traces. The behavior relations

between these domains and the original domain are:

• R1 : {(b0, b1)|b0 ↓z,vz== 0̄ and b0 ↓x,y,vy== b1}
• R2 : {(b0, b2)|b0 ↓y,vy== 0̄ and b0 ↓x,z,vz== b2}

where 0̄ represents a 2-d trace of zeros over all time and ↓() represents

the projection on ().

We construct simpler specifications to be checked for the two

models as

• S1 : � ¬ (x == 0 ∧ 0 < y < 4.5) and

• S2 : � ¬ (x == 0 ∧ 0 < z < 170).

The heterogeneous implication S1 ⇒R1 S0 holds because R−1
1 (

JS1K
B1) forces that y be conflict-free and z be 0, which implies that

y is conflict-free and z is conflict-free. Similarly, we have S2 ⇒R2

S0. Further, we note that in every behavior of M0, either {y, vy}
or {z, vz} are zero and both the possibilities are covered by either

model. Therefore, from Prop. 3, if M1 |=B1 S1 and M2 |=B2 S2,

we can conclude M0 |=B0 S0. Next, we show M1 |=B1 S1 using

conjunctive analysis. M2 |=B2 S2 can be shown in a similar manner.

2) Conjunctive analysis: Consider the subtask of showing

M1 |=B1 S1. We break down this task conjunctively by creating

three models M1i and constructing corresponding specifications S1i,

i = 1, 2, 3, as shown in Fig. 8. M11 models the behaviors of the

POV, and is exactly the same as the POV automaton in M1. M12

models the behavior of the SV only while it is in the conflict zone

and has the same dynamics as that of the conflict_y location

of M1. M13 is a discrete model consisting of two elements. The

component POV is a created by partitioning the component POV of

M1 into discrete states far, close, and inInt using predicates

x ≤ −300, −300 ≤ x ≤ 0, and 0 ≤ x. The second component SV is

merely a discrete control graph of the hybrid automaton model for SV

in M1. The only synchronized pair of transitions is (far
β1→close)

and (waiting
β1→stopped).

The behavior relations are

• R11 : {(b1, b11)|b11 == b1 ↓x },

• R12 : {(b1, b12)|b12 == s1 ↓y,vy where s1 is b1 restricted to

the discrete location (driving,conflict_y)} and

• R13 : {(b1, b13)|b1 is a hybrid trajectory that visits the discrete

locations corresponding to ones in b13 in that order}.

For these behavior relations, we first note that M1 ⊑R1i M1i

because neither of the models M1i is more restrictive than M1. The

specifications for the three models are

• S11 : � (x == −300 ⇒ �9 x < 0)
• S12 : � (♦8 y ≥ 4.5) and

• S13 : � ((POVclose ∧ ¬SVdriving) → ¬(♦SVdriving)),
where POVclose is satisfied in states (close,·) and (inInt,·);
and SVdriving is satisfied in states (·,conflict_y).

The behaviors effectively allowed in B1 by the specifications S1i are

as follows:

• R−1
11 (JS11K): system behaviors where POV takes at least 9

seconds to get from l = −300 to the intersection.

• R−1
12 (JS12K): system behaviors where SV clears the intersection

within 8 seconds of starting to drive.

• R−1
13 (JS13K): system behaviors where SV does not start driving

after POV crosses l.

There can only be two cases:

1) The SV has already started driving before the POV crosses l

and is in the intersection: in this case, from R−1
11 (JS11K) and

R−1
12 (JS12K) together, it will clear the intersection in at most 8

seconds and the POV will not get to the intersection in at least

9 seconds; OR

2) The SV has not started driving when the POV crosses l: in this

case, from R−1
13 (JS13K), the SV cannot start driving anymore.
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waiting

x ≤ −300
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y ≤ 4.5
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ẏ = 0; v̇y = 0
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Fig. 7. A hybrid model M1 for SV going only straight if safe.

driving

x(0) ∈ [−420,−400]

ẋ ∈ [20, 30]

x ≤ 0

(a) Model M11

conflict y

y(0) = 0; vy(0) = 0

ẏ = vy; v̇y ∈ [0.25, 5]
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(b) Model M12

waiting

stopped

conflict y clear y
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β1 β2far close inInt

α1

α2

||

β1 β1

POV

SV

(c) Model M13

Fig. 8. Abstractions M1i of M1 representing the POV dynamics, the SV dynamics in the conflict zone and the discrete protocol.

Therefore, from all the specifications put together, the two cars can’t

be in the intersection at the same time, which implies S1, i.e., we

have conjunctive heterogeneous implication.

M11 |=B11 S11 can be shown by algebraic computations: for the

fastest velocity (30m/s) it takes 10s to travel 300m. M12 |=B12 S12

can be shown by Newton’s laws of motion: the longest time needed to

cross 4.5m with initial velocity 0 and minimum acceleration 0.25m/s2

is

√

2∗4.5
0.25

= 6 seconds. M13 |=B13 S13 can be shown by using

Labeled Transition System Analyzer [30]. Under these conditions,

using Prop. 2, we can infer that M1 |=B1 S1.

In summary, in this section we developed the notion of hierarchical

heterogeneous verification, which studies how verification results

can be combined across different levels of abstraction. Conjunctive

and disjunctive heterogeneous verification constructs can be nested

arbitrarily to create arbitrary mixes of conjunctive and disjunctive

analysis hierarchies. A detailed heterogeneous verification hierarchy

for CICAS-SSA is presented in [65]. In the next section, we develop a

compositional approach for the key step of establishing heterogeneous

abstraction in hierarchical heterogeneous verification when both

concrete and abstract models are composed of smaller interacting

component models.

VI. COMPOSITIONAL HETEROGENEOUS VERIFICATION

In this section we consider the problem of establishing abstraction

across heterogeneous formalisms in a compositional manner. We

study conditions that ensure that the composition of abstractions for

individual components is an abstraction for the composition of the

components. We use behavior abstraction functions as the semantic

mappings since arbitrary behavior relations that are not functions are

not sufficient for compositionality [66].

Fig. 9 illustrates the compositional heterogeneous abstraction prob-

lem considered in this paper. For each of the two levels of abstraction,

i = 0, 1, we assume there is a modeling formalism Mi and a

Q1 ∈ M1, with

JQ1KB
Q
1 ⊆ B

Q
1

∈ B1

Q0 ∈ M0, with

JQ0KB
Q
0 ⊆ B

Q
0

∈ B0

Have:

Q0 ⊑A
Q

Q1

P1 ∈ M1 , with

JP1KB
P
1 ⊆ BP

1
∈ B1

P0 ∈ M0 , with

JP0KB
P
0 ⊆ BP

0
∈ B0

Have:

P0 ⊑A
P

P1

To show:

M0 ⊑A M1

‖

‖

M0 ∈ M0, with

JM0KB0 ⊆ B0 ∈ B0

M1 ∈ M1, with

JM1KB1 ⊆ B1 ∈ B1

Fig. 9. Compositional heterogeneous abstraction analysis.

behavior formalism Bi. Component models Pi, Qi ∈ Mi have their

semantics defined in terms of local behavior domains BP
i , B

Q
i ∈ Bi.

These local domains include only the variables relevant to the given

component. Heterogeneous abstraction between the two models of

each component is established via behavior abstraction functions

AP and AQ (Sec. IV) that are mappings between the respective

local behavior domains. To compose the two models to form the

system models Mi ∈ Mi, the local semantics are lifted to global
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behavior domains Bi ∈ Bi to include variables from both com-

ponents. We seek conditions under which heterogeneous abstraction

between component models in their local behavior domains implies

heterogeneous abstraction between the composite system models in

the global behavior domains.

We note that for globalized semantic composition, models need

to be globalized using behavior globalization as stated in Def. 5.

Similarly, in order to relate the semantic mappings of the individual

components together at a common level, we develop the following

notion of globalization of behavior abstraction functions.

Definition 10 (Abstraction Globalization): Given two behavior

formalisms B0 and B1, behavior domains B0, B
′
0 ∈ B0 and B1, B

′
1 ∈

B1 from each behavior formalism, localizations ↓i of Bi to B′
i for

i = 1, 2, and a behavior abstraction function A′ of B′
0 to B′

1,

a behavior abstraction function A of B0 to B1 is said to be a

globalization of A′ if

∀b0 ∈ B0 : A′(b0↓0) = A(b0)↓1. (2)

We write A = A′⇑ if A is a globalization of A′. We call A′

a localization of A, written A′ = A⇓, iff A = A′⇑. We have

shown that globalization of a given local behavior abstraction function

always exists, but is not necessarily unique; while the localization of

a global behavior abstraction function may not always exist (because

projections cause loss of information), but the localization is unique if

it exists [66]. From the uniqueness of localization and non-uniqueness

of globalization, we note that

(A′⇑)⇓ = A′; (3)

but (A⇓)⇑ may not be equal to A.

In the next two subsections we find conditions under which

compositional heterogeneous abstraction w.r.t. Fig. 9 can be used.

A. Heterogeneous Abstraction in Global Behavior Domains

We start with a simple special-case scenario w.r.t. Fig. 9 in which

the semantics of component models Pi and Qi are defined in the same

local behavior domain at each level of abstraction. In this case, the

global behavior domains are the same as the local behavior domains,

i.e., BP
i = B

Q
i = Bi ∈ Bi, i = 0, 1 . For this special case, only one

behavior abstraction function A is sufficient, as we can set AP =
AQ = A. In this case, the following proposition gives conditions for

compositional heterogeneous abstraction.

Proposition 4: For each abstraction level i = 0, 1, given compo-

nent models Pi, Qi with the semantics of each model interpreted

over a behavior domain Bi, and a behavior abstraction function A :
B0 → B1, if P0 ⊑A P1 and Q0 ⊑A Q1, then P0||Q0 ⊑A P1||Q1.

Proof: From P0 ⊑A P1 and Q0 ⊑A Q1, we have

JP0K
B0 ⊆ A−1(JP1K

B1) and JQ0K
B0 ⊆ A−1(JQ1K

B1). There-

fore, JP0||Q0K
B0 = JP0K

B0 ∩ JQ0K
B0 ⊆ A−1(JP1K

B1) ∩
A−1(JQ1K

B1) = A−1(JP1K
B1 ∩ JQ1K

B1) = A−1(JP1||Q1K
B1).

This proposition states that with global semantics, composition of

abstractions is the abstraction of the composition. Next we consider

the general case where the local semantics of the two components

are defined in terms of distinct behavior domains.

B. Heterogeneous Abstraction In Local Behavior Domains

The following lemma states that heterogeneous abstraction between

model globalizations via a global abstraction function is equivalent

to heterogeneous abstraction between original models via the local-

ization of the global abstraction function.

Lemma 2: For abstraction levels i = 0, 1, given component

models Pi with local behavior domains B′
i, behavior localization

functions ↓i : Bi → B′
i, let their corresponding globalized models

be PG
i with global behavior domains Bi. If A : B0 → B1 is a global

behavior abstraction function and A′ : B′
0 → B′

1 is a localization of

A, then PG
0 ⊑A PG

1 ⇔ P0 ⊑A′

P1.

Proof: From the definition of model globalization, we have

bi ∈ JPG
i KBi ⇔ bi↓i ∈ JPiK

B′
i (4)

and

b
′
i ∈ JPiK

B′
i ⇔ b

′
i↑i ⊆ JPG

i KBi . (5)

Case I: PG
0 ⊑A PG

1 ⇒ P0 ⊑A′

P1 can be shown as follows.

For any given b0 ∈ JPG
0 KB0 , let b1 := A(b0). From PG

0 ⊑A PG
1 ,

we have b1 ∈ JPG
1 KB1 . From (2), A′(b′0) = b1↓1, where b′0 := b0↓0.

Hence, from (4) we have that ∀b′0 ∈ JP0K
B′

0 ,A′(b′0) ∈ JP1K
B′

1 ,

which implies JP0K
B′

0 ⊆ A′−1
(JP1K

B′
1), i.e., P0 ⊑A′

P1.

Case II: PG
0 ⊑A PG

1 ⇐ P0 ⊑A′

P1 can be shown as follows.

From P0 ⊑A′

P1, we have b′0 ∈ JP0K
B′

0 ⇒ A′(b′0) =: b′1 ∈
JP1K

B′
1 . From Def. 10 and (5), for any b′0 ∈ JP0K

B′
0 , b0 ∈ b′0↑0

⊆ JPG
0 KB0 ⇒ A(b0) =: b1 ∈ b′1↑1 ⊆ JPG

1 KB1 . Therefore,

JPG
0 KB0 ⊆ A−1(JPG

1 KB1), i.e., PG
0 ⊑A PG

1 .

Lemma 2 implies the following reasoning indicated in Fig. 9. When

the abstract and concrete models of a component are considered in

isolation, it does not matter whether one does the heterogeneous

abstraction analysis in the global domains or the local domains. We

now use the result from Lemma 2 in a compositional setting when

the component models are composed to form a system model.

For the following discussion, we let models Mi, with the global

behavior domains Bi, be the globalized compositions Pi||
GQi of

component models Pi and Qi with their local behavior domains BP
i

and B
Q
i , for levels of abstraction i = 0, 1 as depicted in Fig. 9. We

consider two scenarios in which the source of the abstraction is at

the system level and component levels, respectively.

1) Centralized development: First, we consider the case where

we have an abstraction function A : B0 → B1 between the global

behavior domains B0 and B1. For this case, the following proposition

shows that the problem of establishing M0 ⊑A M1 can be reduced

to solving two smaller problems P0 ⊑A⇓P

P1 and Q0 ⊑A⇓Q

Q1.

Proposition 5: For abstraction levels i = 0, 1, given component

models Pi and Qi with corresponding local behavior domains BP
i

and B
Q
i , let their globalized semantic compositions be Pi||

GQi in

global behavior domains Bi with behavior localizations ↓ji : Bi →
B

j
i , where j = P,Q, and a global behavior abstraction function

A : B0 → B1. If localizations A⇓P and A⇓Q of A exist and

P0 ⊑A⇓P

P1 and Q0 ⊑A⇓Q

Q1, then M0 ⊑A M1.

Proof: From P0 ⊑AP

P1 and Q0 ⊑AQ

Q1, we know

from Lemma 2 that PG
0 ⊑A PG

1 and QG
0 ⊑AQ

QG
1 , i.e., that

JPG
0 KB0 ⊆ A−1(JPG

1 KB1) and JQG
0 KB0 ⊆ A−1(JQG

1 KB1). We

have, JP0||
GQ0K

B0 = JPG
0 KB0 ∩ JQG

0 KB0 ⊆ A−1(JPG
1 KB1) ∩

A−1(JQG
1 KB1) = A−1(JPG

1 KB1 ∩ JQG
1 KB1)

= A−1(JP1||
GQ1K

B1).
Prop. 5 states that we can establish M0 ⊑A M1 in the global

behavior domains by establishing P0 ⊑A⇓P

P1 and Q0 ⊑A⇓Q

Q1

in the local behavior domains of the two components.

2) Decentralized development: Now, we consider the case where

the abstraction functions AP : BP
0 → BP

1 and AQ : BQ
0 → B

Q
0

between the local behavior domains BP
i and B

Q
i are given and

heterogeneous abstractions of component models P0 ⊑AP

P1 and

Q0 ⊑AQ

Q1 are established independently. This is the more common

situation in practice, particularly for distributed development. In this

case, the following proposition states that if the globalizations of

abstraction functions AP⇑P and AQ⇑Q are defined consistently, the

heterogeneous abstraction results for the components carry over to

their compositions.
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Proposition 6: For abstraction levels i = 0, 1, given component

models Pi and Qi with local behavior domains BP
i and B

Q
i , let their

compositions be Pi||
GQi in global behavior domains Bi and local

behavior abstraction functions be AP : BP
0 → BP

1 and AQ : BQ
0 →

B
Q
1 s.t. P0 ⊑AP

P1 and Q0 ⊑AQ

Q1. If AP⇑P = AQ⇑Q =: A,

i.e., then P0||
GQ0 ⊑A P1||

GQ1.

Proof: The result follows due to (AP⇑P )⇓P = AP and

(AQ⇑Q)⇓Q = AQ from (3) and Prop. 5.

In order to make sure that the globalizations of the local abstraction

functions from the two components agree, we either need the local

behavior domains to be disjoint (no common variables), or the

local abstraction functions to agree on the “intersection” of the

two behavior domains, i.e., along the variables common to the two

components [66].

C. Example

We consider the problem of establishing heterogeneous abstraction

between models M1 from Fig. 7 and M13 from Fig. 8(c) composi-

tionally.

1) Heterogeneous abstraction for POV: Consider the hybrid and

discrete POV component models from Fig. 7 and Fig. 8(c) and

call them P0 and P1 respectively. The local behavior domains are

BPOV
0 : 1-d hybrid traces, i.e., evolution of the hybrid state hPOV :=

(lPOV , x) over time, with lPOV ∈ LPOV := {driving} and x ∈
R; and BPOV

1 := ΣPOV ∗
for set of event labels ΣPOV = {β1, β2}.

The model semantics are JP0K
B0 : the set of all hybrid traces with the

discrete location driving and x that starts in the initial condition

set [−420,−400] and evolves along any arbitrary derivative in the

range [20, 30], and JP1K
B1 : the singleton set {β1β2}.

A behavior abstraction function APOV : BPOV
0 → BPOV

1

constructed by partitioning the continuous dimension x at boundaries

x = l and x = 0 is written mathematically as follows. Given

bPOV
0 = hPOV (t) ∈ BPOV

0 and bPOV
1 = σ0σ1 · · · ∈ BPOV

1 ,

APOV (bPOV
0 ) = bPOV

1 iff ∃ times ti ∈ R+ s.t. ∀t′ ∈ [0, t0),
x(t′) ∈ FROM(σ0); ∀t

′ ∈ [ti−1, ti), x(t
′) ∈ TO(σi−1) ∩ FROM(σi)

for i = 1, . . . , N for some N ∈ N; and ∀t′ ≥ tN , x(t′) ∈ TO(σN ),
where FROM(·) and TO(·) are given in the following table.

σ FROM(σ) TO(σ)

β1 x ≤ l x ∈ [l, 0]
β2 x ∈ [l, 0] x ≥ 0

Otherwise, APOV (bPOV
0 ) = ε.

Given that the boundary l is at −300, the range of velocities is

positive, and the initial condition is in the range [−420,−400], it is

straightforward to show that ∀bPOV
0 ∈ BPOV

0 , APOV (bPOV ) =

β1β2. Therefore, P0 ⊑APOV

P1. Note that if l is say −410,

APOV (bPOV ) = β2 for some bPOV and P0 6⊑APOV

P1.

2) Heterogeneous abstraction for SV: Now consider the SV com-

ponent of the hybrid and discrete models from Fig. 7 and Fig. 8(c) and

call them Q0 and Q1. The local behavior domains are BSV
0 : the set of

3-d hybrid trajectories hSV (t), where hSV := (lSV , x, y, vy) are the

hybrid states that take values in LSV ×X SV , for the discrete set of lo-

cations LSV := {waiting,stopped,conflict_y,clear y}
and the continuous state space X SV := R

3; and BSV
1 := ΣSV ∗

with

ΣSV := {α1, α2, β1}, where α’s signify SV entering and exiting the

intersection.

A behavior abstraction function ASV : BSV
0 → BSV

1 , constructed

by only keeping the discrete part of the hybrid model and adding

transition labels, is written formally as follows. Given bSV
0 = hSV (t),

where t ∈ R+ and hSV = (lSV , x, y, vy), and bPOV
1 = σ0σ1 · · ·

with states qSV
i ∈ LSV

i s.t. qSV
i

σi−→ qSV
i+1, ASV (bSV

0 ) = bSV
1 iff ∃

times ti ∈ R+ s.t. ∀ t′ ∈ [ti, ti+1) with t0 = 0, lSV (t′) == qSV
i .

Otherwise, APOV (bPOV
0 ) = ε.

Because Q1 has the exact same discrete transition graph as that

of Q0, for every hybrid behavior bSV
0 ∈ JQ0K

BSV
0 , ASV (bSV

0 ) ∈

JQ1K
BSV

1 , i.e., Q0 ⊑ASV

Q1.

3) Abstraction between compositions: The variables common to

local behavior domains BPOV
i and BSV

i are x and β1. We have to

make sure that the localizations APOV ⇓∩ and ASV ⇓∩ of abstraction

functions APOV and ASV onto these common variables, i.e., the

mappings from behaviors in x to behaviors in {β1}
∗ agree. APOV ⇓∩

is essentially the same as APOV , with the row for β2 discarded. ASV

puts indirect restrictions on x due to the guard and invariant condi-

tions of the hybrid transitions (waiting, x) → (stopped, x) that

are mapped with the discrete transition waiting
β1−→ stopped.

Such a hybrid transition occurs iff x ≤ l and x ≥ l hold before and

after the transition, i.e., while crossing the boundary x = l in the

increasing direction, which agrees with APOV ⇓∩. In the self-loop

β1 transitions, x does not appear and is therefore unrestricted, and

in agreement with APOV ⇓∩.

Therefore, using Prop. 6, we can conclude (without having to

analyze models M1 and M13 directly) that M1 ⊑A M13.

In summary, compositional heterogeneous abstraction makes it

possible to use component models in isolation for establishing

abstraction between the composite models. In hierarchical hetero-

geneous verification, compositional abstraction can be used at each

level whenever possible. Next we propose a combined structural and

semantic analysis framework using the hierarchical and compositional

heterogeneous verification developed so far, along with multi-view

CPS architectures.

VII. COMBINED STRUCTURAL AND SEMANTIC ANALYSIS

FRAMEWORK

We have described structural analysis with architectural views

in Sec. III and heterogeneous semantic analysis in Sec. IV–VI,

which, combined, form our multi-view architectural framework. We

advocate the use of this framework as a CPS design approach that

combines structural and semantic analyses for multi-model design

and analysis of CPS, overcoming the limitations of the existing

approaches. Each model has a corresponding structural representation

in an architectural view. Depending on the particular formalisms

involved in the heterogeneous analysis, models may explore and

verify various aspects of a cyber-physical system design. The role

of architectural views in this framework is to analyze the structure

of models and store high-level information about models to enable

inter-model analysis. A simple example of such analysis is structural

consistency (cf., Sec. III).

The semantic and structural hierarchies for CICAS-SSA are shown

in Fig. 10. On the left side, verification models described in this paper

are linked with semantic mappings: component-wise abstraction and

behavior relations. On the right side, architectural views are linked

with structural mappings. As the figure shows, for this verification

example we need to manage: various heterogeneous models and

specifications, semantic mappings between various formalisms, ab-

stractions or disjunctive coverage between models and conjunctive or

individual implications between specifications given these mappings,

component-wise semantic mappings, their local and global behavior

domains, localization mappings for compositional development, and

so on.

Without the semantic mappings, the individual verification results

obtained in the various heterogeneous models would not lead to a

verification result about the overall system. For instance, semantic

mappings played a crucial role in verifying M1. The structural

mappings, on the other hand, are used to ensure structural consistency,

without which verification results would not be valid because they

would technically apply to different systems.
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Fig. 10. CICAS-SSA: semantic hierarchies of verification models (left) and structural hierarchies of architectural models (right).

Managing the multi-model design and analysis using our architec-

tural framework provides the necessary rigor that ad hoc approaches

lack. Drawing from our experience with the STARMAC and CICAS-

SSA examples, we believe there are several benefits to multi-model

development and analysis in the architectural framework:

• An extensible base for developing project-specific analyses of

several models. A set of architectural views may contain the

necessary meta-information about models to perform inter-

model analysis. For example, such analysis could ensure that

variables (e.g., sensing a vehicle’s coordinate) are propagated in

similar ways through the system in all models.

• A global system representation that individual modeling for-

malisms cannot provide. Architectural views serve as a unifying

place for system-level information. This satisfies learning and

documentation needs of a CPS project: as new engineers join the

project, views and mappings between them help to communicate

the high-level structure and relations between the system models

[67]. Non-technical stakeholders may find views useful to see

the scope and main parts of a CPS.

• Extensible architectural styles. Architectural styles support cap-

turing the constraints of a domain and constraining the design

process within them. A common way of constraining is to

declare the spaces of valid and invalid architectural configura-

tions. For example, the physical style can be extended into the

electrical, mechanical, hydraulic, and other styles depending on

the level of detail to be captured. Such styles facilitate creation

and verification of corresponding systems.

• Representation of model structures as architectural views. This

enables structural consistency analysis, as described in Sec.

III. Structural consistency guarantees that the models make

compatible assumptions about the structure of the system. Such

analysis may prevent or correct system design flaws [61].

• Explicit representation of interdependent assumptions about

models. Heterogeneous models often make simplifying assump-

tions about each other to keep the complexity of each model

manageable for analysis. We have proposed explicitly represent-

ing these assumptions using constraints over parameters, and a

notion of semantic consistency [68]. Such a consistency analysis

can be supported by the multi-view framework as constraints

over parameters and/or variables can be represented as properties

of architectural elements. For example, a verification view of a

system may assume a worst-case communication delay δ of 0.5

seconds, while a wireless communication view may calculate

a maximum value of δ for communication delays. The overall

analysis is consistent if the assumption δ ≤ 0.5 actually holds.

• Utilization of structural knowledge to simplify verification. The

information about architectural topology may inform verification

activities. For example, the presence of a connector means that

the components share at least one variable. Conversely, absence

of any connection means that the components lack directly

shared variables. This information would let the verification

engine avoid needless behavior consistency checks to satisfy the

conditions of Prop. 6.

The practical need to support the multi-model architectural frame-

work necessitates the creation of integrated design environments for

CPS design and analysis. We used the AcmeStudio architectural

design environment [33] to model views in the STARMAC and

CICAS-SSA examples. One of the key benefits of AcmeStudio for

heterogeneous design is a multi-view editor [61], illustrated in Fig.

11. Here several components in the base architecture are mapped to

a single component in the control view of the STARMAC quadrotor.

AcmeStudio allows specification of constraints over what element

types can be mapped to each other. It also checks for appropriate

correspondences between the mapped components and components

connected to them in both views using graph morphism checking.

We are currently working on additions that allow stronger asso-

ciation between semantic models and architectural views: support

for parametric assumptions, associating variables with components

for verification views to enable more generic analyses, and linking

architectural views to specific models like Simulink.

VIII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This paper presents an architecture-based framework with struc-

tural and semantic mappings to manage multi-model heterogeneous

development of cyber-physical systems. We extend software archi-

tecture principles by adding architectural modeling vocabulary to
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Fig. 11. AcmeStudio multi-view editor showing structural mappings between
the control view of STARMAC and the BA. The latter is shown in Fig. 3 in
detail.

include physical and cyber-physical interface elements and using ar-

chitectural views to capture structure of various models and structural

mappings to ensure consistency. Semantic mappings using behavior

relations and abstraction functions enable the use of hierarchical and

compositional heterogeneous verification. Finally, we combine the

architectural views with behavior relations within a unified analytical

framework to utilize the advantages of both during model-based

development of CPS. For control system development, this framework

creates a formal connection between the concerns addressed by

control engineering models and tools, and the concerns addressed

by the many other models and tools used to design and implement

the complete system.

There are several future research directions that can build upon the

work presented here. The behavior relations presented here are mathe-

matical definitions at the level of mappings between entire behaviors.

To make these more useful in practice, mappings between state spaces

such as generalizations of simulation relations to heterogeneous do-

mains may offer a constructive approach to creating relations between

the resulting behaviors. Inter-formalism dependencies are currently

captured using constraints over static parameters. We are working

on extensions to dynamic constraints. Globalization/localization map-

pings currently exist for different levels of abstraction in behavior

domains of the same formalism. Generalizations to heterogeneous

component models would be interesting. We are investigating how

the structural and semantic sides can help each other. The structural

connectivity information could help simplify verifications or proofs.

We are also developing tool support in AcmeStudio. Support for

semantic consistency is being developed by exporting to external

analysis tools such as the theorem prover KeYmaera [69].
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