
Compositional Heterogeneous Abstraction

Akshay Rajhans Bruce H. Krogh

Department of Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh, PA 15213

{ arajhans | krogh }@ece.cmu.edu

ABSTRACT
In model-based development, abstraction provides insight
and tractability. Different formalisms are often used at dif-
ferent levels of abstraction to represent the variety of con-
cerns that need to be addressed when designing complex
cyber-physical systems. In this paper, we consider the prob-
lem of establishing abstraction across heterogeneous formali-
sms in a compositional manner. We use the framework of
behavioral semantics to elucidate the general conditions that
must be satisfied to assure that the composition of abstrac-
tions for individual components is an abstraction for the
composition of the components. The theoretical concepts
are illustrated using an example of a cooperative intersec-
tion collision avoidance system (CICAS).

Categories and Subject Descriptors
G.4 [Mathematical Software]: Verification; I.6.4 [Simul-
ation and Modeling]: Model Validation and Analysis

Keywords
Heterogeneous Verification; Compositional Reasoning

1. INTRODUCTION
Model-based development (MBD) refers to the creation

of mathematical models of systems under design and check-
ing those models against design specifications using suit-
able analysis tools. The MBD approach aims to catch er-
rors early in the design process, thereby avoiding costly re-
design/re-development cycles. For all but the most trivial
cyber-physical systems (CPS), abstraction is essential for
making analysis and verification tractable. Different mod-
eling formalisms are often used in various abstractions to
facilitate the design of particular aspects of the system. In
our previous work, we proposed the use of behavior rela-
tions to support abstraction across heterogeneous modeling
formalisms [19]. In this paper, we address the problem of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’13, April 8–11, 2013, Philadelphia, Pennsylvania, USA.
Copyright 2013 ACM 978-1-4503-1567-8/13/04 ...$15.00.

establishing heterogeneous abstraction in a compositional
manner.

Several tools have been developed to support simulation
using heterogeneous models. Ptolemy II, for example, sup-
ports hierarchical integration of multiple “models of compu-
tation” into a single simulation model based on an actor-
oriented formalism [8]. MILAN [17] is an integrated simula-
tion framework that allows different components of a system
to be built using different tools. The Metropolis toolchain
[5] supports multiple analysis tools for design and simula-
tion. None of these tools deals with abstraction, however,
other than in the form of encapsulation for components and
subsystems.

Heterogeneous abstraction across particular pairs of mod-
eling formalisms appears often in the literature. Examples
include hybrid abstractions of nonlinear systems [13, 10],
linear hybrid automata abstractions of hybrid systems with
linear continuous dynamics [12], discrete abstractions of hy-
brid systems [4, 9, 3], and continuous abstractions of hybrid
systems [2]. In addition to being specific in the formalisms
that are used, many of these methods are not composi-
tional. Compositional methods, such as assume-guarantee
reasoning, with abstraction defined by language inclusion
[16] and simulation relations [11, 14], are usually defined
in the context of a single formalism. Behavior-interaction-
priority framework for embedded software uses structured
interaction invariants to support compositional analysis but
only for transition system models [6]. Our objective is to
develop a general framework that elucidates the basic con-
ditions for compositional abstraction between any pair of
heterogeneous formalisms.

The notion of tagged signal semantics has been proposed
to compare and compose heterogeneous reactive systems [18,
7]. Julius creates a behavioral framework for modeling con-
trol as a behavior interconnection problem [15] . These ap-
proaches use system trajectories or behaviors as a math-
ematical framework for creating relations between the se-
mantics of different modeling formalisms. We have used a
similar approach to establish abstractions across different
formalisms, which can then be used then be used for het-
erogeneous verification [19]. We use the behavioral frame-
work in this paper to develop compositional heterogeneous
abstraction.

The paper is organized as follows. We introduce the nota-
tion and the problem description in Sect. 2. Sect. 3 develops
a framework for relating the local semantics of a component
model with its global semantics for the purposes of com-
posing it with other component models. Sect. 4 develops

compositional heterogeneous abstraction for the case when
components at each level share the same local behavioral
domain. Sect. 5 extends the development to the more com-
mon case where components are developed within their own
distinct local behavior domains. Sect. 6 illustrates the the-
oretical concepts using an example of a cooperative inter-
section collision avoidance system (CICAS). The concluding
section summarizes the results in this paper and discusses
directions for future work.

2. MATHEMATICAL PRELIMINARIES
A model M is a mathematical description of a system

using a modeling formalism M, which is a collection of
modeling primitives and syntactic rules for building models.
Modeling formalisms typically used for CPS include transi-
tion systems, hybrid automata, signal-flow models, acausal
equation-based models, and queuing networks. The seman-
tics of a model M is defined by a set of legal behaviors from
a given behavior domain B, where the behavior domain is
a member of a given class of behavior domains B. Behav-
ior classes used to define semantics for CPS models include
discrete traces, continuous trajectories and hybrid trajec-
tories. For each behavior class, we assume there exists a
syntax, called the behavior formalism, which can be used to
precisely define behavior domains and individual behaviors.
JMKB denotes the set of legal behaviors for a given model
M with semantics defined in a given behavior domain B.

Given two models M0,M1 with semantic interpretations
in the same behavior domain B, model M1 is called an ab-
straction of model M0 if JM0K

B ⊆ JM1K
B. This is the stan-

dard definition of abstraction in the literature, using, for ex-
ample, language or trace inclusion. We denote abstraction
in this case by the notation M0 ⊑B M1. We introduce the
following notion of behavior abstraction functions as seman-
tic mappings between different behavior domains, perhaps
from two different behavior classes.

Definition 1 (Behavior Abstraction Functions) Giv-
en two behavior classes B0 and B1 and behavior domains
from each behavior class B0 ∈ B0 and B1 ∈ B1, a behavior
abstraction function A : B0 → B1 maps each behavior in B0

to a corresponding abstract behavior in B1.

Behavior abstraction functions are special cases of behavior
relations from [19]. In particular, they are relations that
are also functions, i.e., R ⊆ B0 × B1 s.t. (b0, b1) ∈ R and
(b0, b

′
1) ∈ R only if b1 = b′1.

Example 1 Consider a behavior domain B0 = R
R+ as the

set of all 1-d continuous trajectories starting at time 0. Let
the variable name for the single dimension be x. Consider
another behavior domain B1 = Σ∗∪Σω defined as the set of
all finite or infinite traces with event labels in Σ = {α, ᾱ}.
Consider a usual behavior abstraction technique frequently
used in the literature — state-space partitioning, illustrated
below. The continuous state-space R is partitioned in two
halves x ≤ lx and x ≥ lx at a boundary x = lx as follows.

α

ᾱ

xx = lx

x ≤ lx x ≥ lx

The event corresponding to a continuous trajectory crossing
the partition going from x ≤ lx to x ≥ lx is associated with

the label α and that from x ≥ lx to x ≤ lx is associated with
the label ᾱ.

Consider b0 ∈ B0 and b1 ∈ B1 where b0 = x(t) for t ∈ R+

and b1 = σ0σ1 · · ·σN , for N ∈ N ∪ {∞}. In words, the ab-
straction function states that A(b0) = b1 if (i) ∃ event times
ti ∈ R+, i = 0, 1, . . . , N that correspond to the continuous
trajectory crossing the boundary in the right direction asso-
ciated with the label σi (i.e., from “from(σi)” to “to(σi)”
according to the following table) and (ii) there are no cross-
ings between any consecutive event times ti and ti+1. Math-
ematically, these conditions can be written as

∀t′ ∈ [0, t0), x(t′) ∈ from(σ0),

∀t′ ∈ [ti−1, ti), x(t′) ∈ to(σi−1) ∩ from(σi),

∀t′ ≥ tN , x(t′) ∈ to(σN),

σ from(σ) to(σ)

α x ≤ lx x ≥ lx

ᾱ x ≥ lx x ≤ lx

Otherwise, A(b0) is an empty behavior ε.

With respect to the following picture, A(c) = A(d) = α
and A(f) is the infinite string αᾱαᾱαᾱ · · · . In contrast,
A(e) = ε since e never crosses the boundary.

x

lx

c

d

e

f

t
✷

Behavior abstraction functions are typically used in the
context of models and serve as mappings between the seman-
tics of the two models defined in the two behavior domains
under consideration. Therefore, they are usually inferred
from relationships between models from given modeling for-
malisms and associated definitions of the relationships be-
tween model primitives and their semantic interpretations.

The set-valued extensions of behavior abstraction func-
tions are defined in the usual way. For a given behavior
abstraction function A : B0 → B1 and a set of behav-
iors B′

1 ⊆ B1, the set-valued inverse A−1 is defined as
A−1(B′

1) = {b0 | A(b0) ∈ B′
1}.

Given behavior abstraction functions as semantic map-
pings, heterogeneous abstraction between two models is de-
fined as follows.

Definition 2 (Heterogeneous Abstraction) Given het-
erogeneous behavior classes B0, B1, suppose behavior do-
mains B0 ∈ B0 and B1 ∈ B1 are used to define the seman-
tics of models M0 and M1, respectively, and that there is an
abstraction function A : B0 → B1. Model M1 is a hetero-
geneous abstraction of M0 through A, written M0 ⊑A M1,
if

JM0K
B0 ⊆ A−1(JM1K

B1).

This definition asserts that for every behavior of modelM0

in B0, the abstraction function A associates a corresponding
abstract behavior of model M1 in B1.

Q1 ∈ M1, with

JQ1KB
Q
1 ⊆ B

Q
1

∈ B1

Q0 ∈ M0, with

JQ0KB
Q
0 ⊆ B

Q

0
∈ B0

Have:

Q0 ⊑AQ
Q1

P1 ∈ M1, with

JP1KB
P
1 ⊆ BP

1 ∈ B1

P0 ∈ M0, with

JP0KB
P
0 ⊆ BP

0 ∈ B0

Have:

P0 ⊑AP
P1

To show:

M0 ⊑A M1

‖

‖

M0 ∈ M0, with

JM0KB0 ⊆ B0 ∈ B0

M1 ∈ M1, with

JM1KB1 ⊆ B1 ∈ B1

Figure 1: A schematic of compositional heteroge-
neous abstraction analysis.

Fig. 1 illustrates the compositional heterogeneous abstrac-
tion problem considered in this paper. For each of the two
levels of abstraction, i = 0, 1, we assume there is a modeling
formalism Mi and a behavior class Bi. Component models
Pi, Qi ∈ Mi have their semantics defined in terms of local
behavior domains BP

i , B
Q
i ∈ Bi. These local domains in-

clude only the variables relevant to the given component.
Heterogeneous abstraction between the two models of each
component is established via behavior abstraction functions
AP and AQ that are mappings between the respective local
behavior domains. To compose the two models to form the
system models Mi ∈ Mi, the local semantics are lifted to
global behavior domains Bi ∈ Bi to include variables from
both components. We seek conditions under which hetero-
geneous abstraction between component models in their lo-
cal behavior domains implies heterogeneous abstraction be-
tween the composite system models in the global behavior
domains.

3. LOCAL VS. GLOBAL SEMANTICS
We begin by defining the relationship between behaviors

in local domains for component models and a global domain
for the composition.

Definition 3 (Behavior Localization) Given a behavior
class B and two behavior domains B,B′ ∈ B, an onto func-
tion ↓ : B → B′ (i.e., every element of B′ has at least one
pre-image in B) is called a (behavior) localization of behav-
ior domain B to behavior domain B′.

Given a localization ↓ of B to B′, for b ∈ B, we will let
b↓ denote ↓(b). The set-valued extension of localization can
be defined in the usual way. Next, we consider two com-
mon types of variable elimination as examples of behavior
localization projections.

Example 2 (Event label removal) Let L ⊆ Σ∗ be a lan-
guage over a global alphabet Σ. Let A ⊆ Σ be a local al-
phabet relevant for a component. The localization due to

natural projection of L onto the set of strings over A∗, writ-
ten L↓A := {s↓|s ∈ L}, where s↓ is recursively defined as
follows.

1. The empty string is projected onto itself, i.e. ε↓ = ε.

2. For any string s ∈ σ∗ and a ∈ Σ

• (s ◦ a)↓ = (s)↓ ◦ a . . . if a ∈ A

• (s ◦ a)↓ = (s)↓ . . . if a 6∈ A ✷

Example 3 (Continuous Variable Elimination)
Consider a global behavior domain B = (R2)R+ of 2-d con-
tinuous trajectories, with the variables along the two dimen-
sions named x and y. Let a local behavior domain be B′ =
(R)R+ with the variable name x. Let B̃ ⊆ B = {[x(t) y(t)]T |
∀t ∈ R+, x(t) ≥ 0, y(t) ∈ [0, 1]}. Then the localization
due to elimination of variable y can be written in terms
of its existential quantification. B̃↓ can be defined as the set
{x(t)|∃y(t) s.t. ∀t ∈ R+, x(t) ≥ 0, y(t) ∈ [0, 1]}. ✷

For b′ ∈ B′ we will let b′↑ denote the set-valued function
↑ : B′ → 2B − {∅} defined by ↑(b′) = ↓−1(b′) = {b ∈ B|b↓ =
b′}. We will call the function ↑ a (behavior) globalization
of B′ to B. Note that b′↑ is always non-empty since the
localization function ↓ is onto.

Behavior localization and globalization are generally in-
ferred from relationships between models from given mod-
eling formalisms and associated definitions of the relation-
ships between model primitives and their semantic interpre-
tations.

Note that in case of compositional heterogeneous analy-
sis as depicted in Fig. 1, there are four different behavior
localizations (or globalizations) – one for each component
and one at each level of abstraction. We index these with
subscripts i = 0, 1 for the two levels of abstraction and su-
perscripts j = 1, 2 or j = P,Q to distinguish between these
wherever necessary.

Given behavior globalizations at the abstract and con-
crete levels of abstraction, we next define the globalization
of a behavior abstraction function between the abstract and
concrete local domains.

Definition 4 (Abstraction Globalization) Given two
behavior classes B0 and B1, behavior domains from each be-
havior class: B0, B

′
0 ∈ B0 and B1, B

′
1 ∈ B1, localizations ↓i

of Bi to B′
i for i = 1, 2, and a behavior abstraction function

A′ of B′
0 to B′

1, a behavior abstraction function A of B0 to
B1 is said to be a globalization of A′ if

∀b0 ∈ B0 : A′(b0↓0) = A(b0)↓1. (1)

In words, the definition of abstraction globalization states
that given any global concrete behavior b0, the abstraction
of its localization b0↓0 at the concrete level 0 through the
local abstraction function A′ should be the same as the local-
ization at the abstract level 1 of its corresponding abstract
behavior A(b0). This concept is illustrated by the following
diagram: A is a globalization of A′ if the diagram commutes.

B′
1 B1

B0B′
0

↓1

A

↓0

A′

We write A = A′⇑ if A is a globalization of A′. We call
A′ a localization of A, written A′ = A⇓, iff A = A′⇑.

Note that in case of compositional heterogeneous analysis
as depicted in Fig. 1, there are two different abstraction
localizations/globalizations – one for each component.

We note the following existence and uniqueness properties
of localization/globalization of behavior abstraction func-
tions.

• Existence of globalization. For a given local ab-
straction function A′, it is always possible to construct
a globalization A′⇑ s.t. the diagram commutes. This
is due to the fact that both localizations ↓i, i = 0, 1
are onto functions. Therefore, for any local behaviors
b′0 and b′1 = A′(b′0), b

′
0↑0 and b′1↑1 are non-empty. One

can then associate every behavior b0 ∈ b′0↑0 with some
behavior b1 ∈ b′1↑1, which results in a valid globaliza-
tion of A′.

• Non-uniqueness of globalization. For a given lo-
cal abstraction function A′, its globalization A′⇑ is not
unique. For a b′0 with A′(b′0) = b′1 and b′1↑1 = {b01, b

1
1},

consider a global behavior b0 ∈ b′0↑0 . Then A0 with
A0(b0) = b01 and A1 with A1(b0) = b11 can both be
globalizations of A′. Since localization causes loss of
information, its set-valued inverse provides some free-
dom for creating mappings at the global level; appro-
priate ones need to be chosen.

• Non-existence of localization. For a given global
abstraction function A, its localization A⇓ may not
exist, i.e., the diagram may not commute for any A′.
Consider b00, b

1
0 with A(b00) = b01 and A(b10) = b11, and

b00↓0 = b10↓0, but b01↓0 6= b11↓0. For such a case, there
can be no A′ s.t. A′⇑ = A.

• Uniqueness of localization. For a given global ab-
straction function A, if A⇓ exists, it is unique. This
is simply due to the diagram commuting. ∀ b0, behav-
iors b0↓0, A(b0) =: b1, and b1↓1 are unique. Therefore,
for every given mapping A(b0) = b1, there is a unique
mapping A′(b0↓0) = b1↓1.

• Globalization and localization are not neces-
sarily inverse operations. From the uniqueness of
localization and non-uniqueness of globalization, it is
straightforward to show that

(A′⇑)⇓ = A′; (2)

but (A⇓)⇑ may not be equal to A.

Given the theoretical machinery developed in this section,
in the next two sections we find conditions under which
compositional heterogeneous abstraction w.r.t. Fig. 1 can
be used.

4. HETEROGENEOUS ABSTRACTION IN
GLOBAL BEHAVIOR DOMAINS

We start with a simple special-case scenario w.r.t. Fig. 1
in which the semantics of component models Pi and Qi are
defined in the same local behavior domain at each level of
abstraction. In this case, the global behavior domains are
the same as the local behavior domains , i.e., BP

i = B
Q
i =

Bi ∈ Bi, i = 0, 1. For this special case, only one behavior

abstraction function A is sufficient, as we can set AP =
AQ = A. In this case, we define the semantic composition
of two component models as follows.

Definition 5 (Semantic Composition) Given compone-
nt models P and Q from the same modeling formalism M
with semantics defined in behavior domain B, the composi-
tion P ||Q is a model in M s.t.

JP ||QKB = JP KB ∩ JQKB. (3)

This definition of composition as the intersection of behav-
ior sets is consistent with the literature for composition using
specific behavior domains [15, 18, 7]. For a given modeling
formalism M, syntactic techniques may exist for creating
a composition, e.g., construction of product automata. We
support all such procedures so long as (3) holds.

The following proposition gives conditions for composi-
tional heterogeneous abstraction.

Proposition 1 For each abstraction level i = 0, 1, given
component models Pi, Qi with the semantics of each model
interpreted over a behavior domain Bi, and a behavior ab-
straction function A : B0 → B1, if P0 ⊑A P1 and Q0 ⊑A

Q1, then

P0||Q0 ⊑A
P1||Q1.

Proof. From P0 ⊑A P1 and Q0 ⊑A Q1, we have JP0K
B0

⊆ A−1(JP1K
B1) and JQ0K

B0 ⊆ A−1(JQ1K
B1). Therefore,

JP0||Q0K
B0 = JP0K

B0 ∩ JQ0K
B0

⊆ A−1(JP1K
B1) ∩A−1(JQ1K

B1)

= A−1(JP1K
B1 ∩ JQ1K

B1)

= A−1(JP1||Q1K
B1).

�

This proposition states that with global semantics, com-
position of abstractions is the abstraction of the composi-
tion.

Remark 6 (Insufficiency of Behavior Relations) We
note that arbitrary behavior relations from [19] that are
not functions are not sufficient in even this simple case of
compositional heterogeneous abstraction. If a behavior re-
lation A is not a function, it is possible to have a behavior
b0 ∈ JP0K

B0 ∩ JQ0K
B0 with (b0, p1) ∈ A, (b0, q1) ∈ A, s.t.

p1 ∈ JP1K
B1\JQ1K

B1 and q1 ∈ JQ1K
B1\JP1K

B1 but 6 ∃ b1 ∈
JP1K

B1 ∩ JQ1K
B1 with (b0, b1) ∈ A, as shown in the following

Venn diagram.

JP0K
B0

JP1K
B1

JQ0K
B0

JQ1K
B1

b0

p1

q1

JP1K
B1 ∩ JQ1K

B1

A(b0)
A(b0)

For this b0, we have b0 ∈ A−1(JP1K
B1)∩A−1(JQ1K

B1) but
b0 6∈ A−1(JP1K

B1 ∩ JQ1K
B1) and therefore the above proof

does not hold. The arbitrary mappings that are the source
of these counterexamples – those that allow one concrete be-
havior to be associated with more than one abstract behav-
iors – are perhaps not necessary in practice. The restriction
from behavior relations to functions disallows the possibility
of having several abstract behaviors correspond to a single
concrete behavior, while still allowing several concrete be-
haviors to be mapped to a single abstract behavior. ✷

In the next section, we consider the general case where the
local semantics of the two components are defined in terms
of distinct behavior domains.

5. HETEROGENEOUS ABSTRACTION IN
LOCAL BEHAVIOR DOMAINS

We now consider a more general scenario w.r.t. Fig. 1 in
which the component models Pi and Qi have different local
behavior domains BP

i and B
Q
i in behavior class Bi, for levels

of abstraction i = 0, 1. In this case, we need to lift the local
semantics of the components to common global behavior
domains before we can compose them.

Definition 7 (Model Globalization) Given a global be-
havior domain B, a model P with its local behavior domain
B′, and a behavior localization function ↓ : B → B′, the
(model) globalization of P is a model PG s.t. JPGKB =

JP KB
′

↑.

For a given modeling formalism M, syntactic approaches
for globalization may exist, e.g., addition of self loops for
newly added event labels for discrete transition systems, or
addition of state variables with unconstrained dynamics for
continuous dynamic systems. We support all such proce-

dures that lead to models with the set of behaviors JP KB
′

↑.

Example 4 Consider transition system model P as shown
below. The local alphabet is ΣP = {α, β} and the local
behavior domain BP = Σ∗. Let the global alphabet be
Σ = {α, β, γ} and the global behavior domain B = Σ∗. Let
the projection function ↓ : B → BP be defined as per Ex. 2.

α β

P

γ γ γ

α β

PG

The semantic interpretation of P in the local behavior do-
main BP is the set {αβ}. The globalization of the set {αβ}
in the global behavior domain B is the set {γ∗αγ∗βγ∗}.
Note that the syntactic globalization procedure by intro-
ducing self loops for the new label γ results in a model PG

shown above, and JPGKB = JP KB
P

↑. ✷

The following lemma states that heterogeneous abstrac-
tion between model globalizations via a global abstraction
function is equivalent to heterogeneous abstraction between
original models via the localization of the global abstraction
function.

Lemma 1 For abstraction levels i = 0, 1, given component
models Pi with local behavior domains B′

i, behavior localiza-
tion functions ↓i : Bi → B′

i, let their corresponding glob-
alized models be PG

i with global behavior domains Bi. If

A : B0 → B1 is a global behavior abstraction function and
A′ : B′

0 → B′
1 is a localization of A, then

P
G
0 ⊑A

P
G
1 ⇔ P0 ⊑A′

P1.

Proof. From the definition of model globalization, we
have

bi ∈ JPG
i KBi ⇔ bi↓i ∈ JPiK

B′
i (4)

and

b
′
i ∈ JPiK

B′
i ⇔ b

′
i↑i ⊆ JPG

i KBi . (5)

Case I: PG
0 ⊑A PG

1 ⇒ P0 ⊑A′

P1

For any given b0 ∈ JPG
0 KB0 , let b1 := A(b0). From PG

0 ⊑A

PG
1 , we have b1 ∈ JPG

1 KB1 . From (1), A′(b′0 := b0↓0) =

b1↓1. Hence, from (4), we have that ∀b′0 ∈ JP0K
B′

0 ,A′(b′0) ∈

JP1K
B′

1 , which implies JP0K
B′

0 ⊆ A′−1
(JP1K

B′
1), i.e., P0 ⊑A′

P1.
Case II: PG

0 ⊑A PG
1 ⇐ P0 ⊑A′

P1

From P0 ⊑A′

P1, we have b′0 ∈ JP0K
B′

0 ⇒ A′(b′0) =: b′1 ∈

JP1K
B′

1 . From Def. 4 and (5), for any b′0 ∈ JP0K
B′

0 , b0 ∈ b′0↑0
⊆ JPG

0 KB0 ⇒ A(b0) =: b1 ∈ b′1↑1 ⊆ JPG
1 KB1 . Therefore,

JPG
0 KB0 ⊆ A−1(JPG

1 KB1), i.e., PG
0 ⊑A PG

1 . �

In terms of Fig. 1, the implication of Lemma 1 is the fol-
lowing. When the abstract and concrete models of a compo-
nent are considered in isolation, it does not matter whether
one does the heterogeneous abstraction analysis in the global
domains or the local domains.

We now use the result from Lemma 1 in a compositional
setting when the component models are composed to form
a system model. The following definition generalizes the
notion of semantic composition from Def. 5.

Definition 8 (Globalized Semantic Composition) Given
a global behavior domain B, component models P and Q with
their corresponding local behavior domains BP and BQ, and
behavior localizations ↓P : B → BP and ↓Q : B → BQ, the
globalized semantic composition of P and Q in the global
behavior domain B, denoted by P ||GQ is the semantic com-
position of models PG and QG, which are the globalizations
of P and Q respectively, i.e., P ||GQ = PG||QG.

Example 5 Consider two transition system models P and
Q as shown below (without the dashed self loops).

γ γ γ

α β

P (G)

β β β

α γ

Q(G)

α

γ

γ
ββ

M

The local alphabets of P and Q are ΣP = {α, β} and ΣP =

{α, γ}, and corresponding behavior domains BP = ΣP∗

and

BQ = ΣQ∗

respectively. Let the global alphabet be Σ =
{α, β, γ}, and the global behavior domain B = Σ∗. Let ↓P

and ↓Q be the natural projections as defined in Ex. 2.
The local sets of behaviors for the two components are

JP KB
P

= {αβ} and JP KB
P

= {αγ}. The semantic glob-

alizations of the two component models yield JP KB
P

↑P =

{γ∗αγ∗βγ∗} and JQKB
Q

↑Q = {β∗αβ∗γβ∗}. The composi-
tion M := P ||GQ has corresponding sets of behaviors given

by JMKB = JP KB
P

↑P ∩ JQKB
Q

↑Q = {αβγ, αγβ}.

Note that the syntactic globalization procedure of intro-
ducing self loops yields models PG and QG, whose syntac-
tic composition results in a model M as shown above, s.t.
M = P ||GQ. ✷

Example 6 Let Bj := R
R+ be the sets of 1-d continuous

trajectories with variable names xj , j = p, q respectively.
Let two components P given by ẋp ∈ [1, 2] and Q given by
ẋq ∈ [3, 5] respectively have their semantics defined in do-
mains Bj , j = p, q. Let B := (R2)R+ be the system behavior
domain of 2-d continuous trajectories with variable names
along the two dimensions xp and xq. The globalizations of P
and Q add the missing dimension and leave it unconstrained.
Therefore, PG and QG can be obtained as

P
G ≡

ẋp

ẋq

 ∈

[1, 2]

(−∞,∞)

 , Q
G ≡

ẋp

ẋq

 ∈

(−∞,∞)

[3, 5]

 .

Their composition is P ||GQ ≡

ẋp

ẋq

 ∈

[1, 2]

[3, 5]

 . ✷

For the following discussion, we let models Mi, with the
global behavior domains Bi, be the globalized compositions
Pi||

GQi of component models Pi and Qi with their local

behavior domains BP
i and B

Q
i , for levels of abstraction i =

0, 1 as depicted in Fig. 1. We consider two scenarios in which
the source of the abstraction is at the system and component
levels respectively.

5.1 Centralized development
First, we consider the case where an abstraction function

A : B0 → B1 between the global behavior domains B0 and
B1 is given. For this case, the following proposition shows
that the problem of establishing M0 ⊑A M1 can be reduced

to solving two smaller problems P0 ⊑A⇓P

P1 and Q0 ⊑A⇓Q

Q1.

Proposition 2 For abstraction levels i = 0, 1, given com-
ponent models Pi and Qi with corresponding local behavior
domains BP

i and B
Q
i , let their globalized semantic compo-

sitions be Mi := Pi||
GQi in global behavior domains Bi

with behavior localizations ↓ji : Bi → B
j
i , where j = P,Q,

and a global behavior abstraction function A : B0 → B1.

If localizations A⇓P and A⇓Q of A exist and P0 ⊑A⇓P

P1 and Q0 ⊑A⇓Q

Q1, then M0 ⊑A M1.

Proof. From P0 ⊑A⇓P

P1 and Q0 ⊑A⇓Q

Q1, we know
from Lemma 1 that PG

0 ⊑A PG
1 and QG

0 ⊑A QG
1 , i.e., that

JPG
0 KB0 ⊆ A−1(JPG

1 KB1) and JQG
0 KB0 ⊆ A−1(JQG

1 KB1). We
have,

JP0||
G
Q0K

B0 = JPG
0 KB0 ∩ JQG

0 KB0

⊆ A−1(JPG
1 KB1) ∩A−1(JQG

1 KB1)

= A−1(JPG
1 KB1 ∩ JQG

1 KB1)

= A−1(JP1||
G
Q1K

B1).

�

Prop. 2 states that we can establish M0 ⊑A M1 in the

global behavior domains by establishing P0 ⊑A⇓P

P1 and

Q0 ⊑A⇓Q

Q1 in the local behavior domains of the two com-
ponents.

Example 7 Consider component models

P0 ≡

ẋ

ẏ

 ∈

[2, 4]

[1, 2]

 ,

x

y

 (0) ∈

[0, lx)

[0, ly)

 and

Q0 ≡

ẋ

ż

 ∈

[3, 5]

[1, 2]

 ,

x

z

 (0) ∈

[0, lx)

[0, lz)

.

Let P1 and Q1 be as follows.

p0 p1

p2 p3
α

α

ββ

P1

q0 q1

q2 q3
a

a

ββ

Q1

The compositions are M0 := P0||
GQ0 given by

ẋ

ẏ

ż

∈

[3, 4]

[1, 2]

[1, 2]

,

x

y

z

(0) ∈

[0, lx)

[0, ly)

[0, lz)

and

p0q0 p1q0 p2q0 p3q0

p0q1 p1q1 p2q1 p3q1

p0q2 p1q2 p2q2 p3q2

p0q3 p1q3 p2q3 p3q3

M1 := P1||
GQ1.

α

α

α

α

aa

aa

β

β
β

β

Global behavior domain B0 := (R3)R+ for M0 is the set of
3-d trajectories with variable names x, y, z; while global be-
havior domain B1 := Σ∗ for M1 is the set of all finite traces
over the alphabet Σ = {α, ᾱ, β, β̄, a, ā}. Let the behavior ab-
straction function A : B0 → B1 be defined by partitioning
the continuous state space as follows.

β̄

β

α
ᾱ

a
ā

x

y

z

Given b0 = [x(t) y(t) z(t)]T =: x̄(t), t ∈ R+ and b1 =
σ0σ1 · · · , A

j(b0) = b1 if ∃ times ti ∈ R+ s.t.

∀t′ ∈ [0, t0), x̄(t) ∈ from(σ0),

∀t′ ∈ [ti−1, ti), x̄(t) ∈ to(σi−1) ∩ from(σi),

∀t′ ≥ tN x̄(t) ∈ to(σN)

where i = 1, . . . , N for some N ∈ N and from(·) and to(·)
are given in the following table.

σ from(σ) to(σ)

a z ≤ lz, x, y ∈ R z ≥ lz, x, y ∈ R

ā z ≥ lz, x, y ∈ R z ≤ lz, x, y ∈ R

α y ≤ ly , x, z ∈ R y ≥ ly, x, z ∈ R

ᾱ y ≥ ly , x, z ∈ R y ≤ ly, x, z ∈ R

β x ≤ lx, y, z ∈ R x ≥ lx, y, z ∈ R

β̄ x ≥ lx, y, z ∈ R x ≤ lx, y, z ∈ R

Otherwise, A(b0) = ε.
The problem of establishing M0 ⊑A M1 for above A

can be reduced to two smaller problems P0 ⊑A⇓P

P1 and

Q0 ⊑A⇓Q

Q1 as follows.
Local behavior domains for the two models of component

P are BP
0 = (R2)R+ with variable names for the dimensions

x and y; and BP
1 = ΣP ∗

with ΣP = {α, ᾱ, β, β̄}. Sim-

ilarly, in case of the two models of component Q, B
Q
0 =

(R2)R+ with variable names for the dimensions x and z; and

B
Q
1 = ΣQ∗

with ΣQ = {a, ā, β, β̄}. Let behavior localiza-
tion functions for the two components at the two levels of
abstractions be variable elimination and natural projection
as in Ex. 2 and 3. We get the behavior abstraction function
localizations AP : BP

0 → BP
1 and AQ : BQ

0 → B
Q
1 , where

AP = A⇓P and AQ = A⇓Q are as follows.

y

ly

lx

α β

ᾱ

β̄ x

z

lz

lx

a β

ā

β̄ x

Let x̄P = [xy]T and x̄Q = [xz]T . Given bP0 = x̄P (t), bQ0 =

x̄Q(t) for t ∈ R+ and b
j
1 = σ

j
0σ

j
1 · · · , Aj , j = P,Q, are

defined as Aj(bj0) = b
j
1 if ∃ times tji ∈ R+ s.t.

∀t′ ∈ [0, tj0), x̄j(t′) ∈ from
j(σj

0),

∀t′ ∈ [tji−1, t
j
i), x̄j(t′) ∈ to

j(σj
i−1) ∩ from

j(σj
i),

∀t′ ≥ t
j
N , x̄j(t′) ∈ to

j(σj
N),

where i = 1, . . . , N for some N ∈ N and from
j(·) and to

j(·)
are given in the following tables.

σ from
P (σ) to

P (σ)

α y ≤ ly, x ∈ R y ≥ ly, x ∈ R

ᾱ y ≥ ly, x ∈ R y ≤ ly, x ∈ R

β x ≤ lx, y ∈ R x ≥ lx, y ∈ R

β̄ x ≥ lx, y ∈ R x ≤ lx, y ∈ R

σ from
Q(σ) to

Q(σ)

a z ≤ lz, x ∈ R z ≥ lz, x ∈ R

ā z ≥ lz, x ∈ R z ≤ lz, x ∈ R

β x ≤ lx, z ∈ R x ≥ lx, z ∈ R

β̄ x ≥ lx, z ∈ R x ≤ lx, z ∈ R

Otherwise, Aj(bj0) = ε.
From the initial conditions and the monotonicity of the

dynamics of P0 (resp. Q0), we can see that every behavior
of the concrete model crosses the x = lx and y = ly (resp.
z = lz) boundaries in either order and have corresponding
behaviors αβ (resp. aβ) or βα (resp. βa) at the discrete level

that they map to. Therefore P0 ⊑AP

P1 and Q0 ⊑AQ

Q1.
Using Prop. 2, M0 ⊑A M1.

Here, analyzing Pis and Qis is much easier than analyz-
ing Mis directly. In general, the extent of savings achieved
by doing the heterogeneous abstraction analysis composi-
tionally is depends on how much smaller the local behavior
domains are compared to the global ones. ✷

5.2 Decentralized development
Now, we consider the case where the abstraction func-

tions AP : BP
0 → BP

1 and AQ : B
Q
0 → B

Q
0 between the

local behavior domains BP
i and B

Q
i are given and hetero-

geneous abstractions of component models P0 ⊑AP

P1 and

Q0 ⊑AQ

Q1 are established independently. This is the more
common situation in practice, particularly for distributed
development. In this case, the following proposition states
that if the globalizations of abstraction functions AP⇑P and
AQ⇑Q are defined consistently, the heterogeneous abstrac-
tion results for the components carry over to their composi-
tions.

Proposition 3 For abstraction levels i = 0, 1, given com-
ponent models Pi and Qi with local behavior domains BP

i

and B
Q
i , let their compositions be Pi||

GQi in global behav-
ior domains Bi and local behavior abstraction functions be

AP : BP
0 → BP

1 and AQ : BQ
0 → B

Q
1 s.t. P0 ⊑AP

P1 and

Q0 ⊑AQ

Q1. If AP⇑P = AQ⇑Q =: A, then P0||
GQ0 ⊑A

P1||
GQ1.

Proof. The result follows due to (AP⇑P)⇓P = AP and
(AQ⇑Q)⇓Q = AQ from (2) and Prop. 2. �

Prop. 3 states that the heterogeneous abstraction results
for component models Pi and Qi via possibly very different
abstraction functions AP and AQ follow over to the system
heterogeneous abstraction so long as AP and AQ are consis-
tent, i.e., that it is possible to find globalizationsAP ⇑P and
AQ⇑Q that are in agreement with each other. Note from
the non-uniqueness of globalization of abstraction functions
that there is some design freedom while constructing the se-
mantic mappings at the global behavior domains for the two
components such that they agree.

We note the following conditions for agreement of the
globalizations of the local abstraction functions from the two
components.

• Disjoint behavior domains. If the local behavior
domains are disjoint (no common variables), the ab-
straction functions are disjoint. Therefore, when glob-
alized, they are not mutually restrictive and it is al-
ways possible to construct globalizations that agree.

• Agreement in intersection. For non-disjoint lo-
cal behavior domains, it is necessary for globalization
agreement that the local abstraction functions agree
on the “intersection” of the two behavior domains, say
B∩

i , i.e., along the variables common to the two compo-
nents. If localizations AP⇓∩ : B∩

0 → B∩
1 and AQ⇓∩ :

B∩
0 → B∩

1 of AP and AQ agree, it is always possible
to construct globalizations of AP and AQ that agree
due to the fact that variables not common to the two
components are not mutually constraining.

We illustrate distributed compositional heterogeneous ab-
straction analysis in the following section.

6. EXAMPLE
Consider a cooperative intersection collision avoidance sy-

stem for stop-sign assist (CICAS-SSA) [1] from Fig. 2, which
depicts a subject vehicle (SV) waiting at a stop-sign-controll-
ed intersection to cross through traffic on a major road. The
objective is to augment human judgment of the SV driver
about whether a given gap in oncoming traffic is safe by sens-
ing the positions and/or velocities of the oncoming vehicles
and doing some computations based on vehicle dynamics, in-
tersection geometry and speed limits. The oncoming vehicle
is called the principal other vehicle (POV). The SV modeled
is allowed to (but doesn’t have to) enter the intersection only
if the POV is far enough away from the intersection to allow
the SV to pass completely through the intersection before
the POV has arrived at the intersection. Otherwise the SV
has to remain stopped.

POV

SV

h

0
0 fl

far close inInt
Y

X

Figure 2: A simple variant of CICAS-SSA.

We model this system at two levels of abstraction. At
the detailed level we model the two vehicles using their hy-
brid dynamics, while at the abstract level, we model sim-
ple discrete dynamics. The discrete dynamics can be used
to verify protocols such as “if SV hasn’t entered in the in-
tersection already, then it doesn’t do so once it sees POV
get close to the intersection.” This protocol verification can
then be used in conjunction with other information to con-
struct a hierarchical heterogeneous verification of the system
to guarantee safety specifications such as “the two cars are
never in the intersection at the same time” as demonstrated
in [19]. In this paper, we consider the problem of establish-
ing in a distributed compositional manner that the discrete
model of the system used in the protocol verification is a
heterogeneous abstraction of the underlying hybrid model
of the system. In this distributed compositional heteroge-
neous abstraction, we use two different kinds of abstraction
functions for two components – one using state-space par-
titioning and another by retaining the discrete transition
graph by projecting away all the continuous dynamics.

The POV drives along the major road with its position
x increasing over time, at a velocity between a minimum
and a maximum, both limits being positive (i.e., it cannot
drive in reverse on the highway). We assume that the SV is
able to sense the position of the POV to make its decision.
Once in the intersection, SV keeps driving with a velocity in
the range [vy , vy], both limits assumed positive, eventually
clearing the intersection at y = h.

6.1 Heterogeneous abstraction for POV
The hybrid model P0 and the discrete model P1 for the

POV are shown in Fig. 3.

driving

ẋ ∈ [vx, vx]

x0 ∈ [−420,−400]
(a) Detailed model P0

far close inInt
β1 β2

(b) Abstract model P1

Figure 3: Hybrid and discrete POV models.

The local behavior domains are BPOV
0 : 1-d hybrid traces,

i.e., evolution of the hybrid state hPOV := (lPOV , x) over
time, with lPOV ∈ LPOV := {driving} and x ∈ R; and
BPOV

1 := ΣPOV ∗
for set of event labels ΣPOV = {β1, β2}.

The model semantics are JP0K
B0 : the set of all hybrid traces

with the discrete location driving and x that starts in the
initial condition set [−420,−400] and evolves along any ar-
bitrary derivative in the range [vx, vx], and JP1K

B1 : the sin-
gleton set {β1β2}.

A behavior abstraction function APOV : BPOV
0 → BPOV

1

constructed by partitioning the continuous dimension x at
boundaries x = l and x = 0 is written mathematically as
follows. Given bPOV

0 = hPOV (t) ∈ BPOV
0 and bPOV

1 =
σ0σ1 · · · ∈ BPOV

1 , APOV (bPOV
0) = bPOV

1 iff ∃ times ti ∈ R+

s.t. ∀t′ ∈ [0, t0), x(t
′) ∈ from(σ0); ∀t

′ ∈ [ti−1, ti), x(t
′) ∈

to(σi−1) ∩ from(σi) for i = 1, . . . , N for some N ∈ N; and
∀t′ ≥ tN , x(t′) ∈ to(σN), where from(·) and to(·) are given
in the following table.

σ from(σ) to(σ)

β1 x ≤ l x ∈ [l, 0]

β2 x ∈ [l, 0] x ≥ 0

Otherwise, APOV (bPOV
0) = ε.

Suppose the boundary l is at −300. Since the range of
velocities is positive, and initial condition is in the range
[−420,−400], it is straightforward to show that ∀bPOV

0 ∈

BPOV
0 , APOV (bPOV) = β1β2. Therefore, P0 ⊑APOV

P1.
Note that if l is say −410, APOV (bPOV) = β2 for some

bPOV and P0 6⊑APOV

P1.

6.2 Heterogeneous abstraction for SV
The hybrid model Q0 and the discrete model Q1 for the

SV are shown in Fig. 4. At the hybrid (respectively, dis-
crete) level, the SV is able to sense the POV position x as
a continuous input variable (respectively, the event β1).

The local behavior domains are BSV
0 : the set of 2-d hybrid

trajectories hSV (t), where hSV := (lSV , x, y) are the hybrid

stopped

waiting

inInt clear
y0 == 0

ẏ == 0

ẏ == 0

ẏ ∈ [vy , vy]
ẏ ∈ [vy , vy]

x ≤ l

y ≤ h

x ≥ l

x < l

y ≥ h

(a) Detailed model Q0

waiting

stopped

inInt clear

β1

β1β1

α1

α2

(b) Abstract model Q1

Figure 4: Hybrid and discrete SV models.

states that take values in LSV × X SV , for the discrete set
of locations LSV := {waiting, stopped, inInt, clear} and
the continuous state space X SV := R

2; and BSV
1 := ΣSV ∗

with ΣSV := {α1, α2, β1}, where α’s signify SV entering and
exiting the intersection.

A behavior abstraction function ASV : BSV
0 → BSV

1 , con-
structed by only keeping the discrete part of the hybrid
model and adding transition labels, is written formally as
follows. Given bSV

0 = hSV (t), where t ∈ R+ and hSV =
(lSV , x, y), and bPOV

1 = σ0σ1 · · · with states qSV
i ∈ LSV

i

s.t. qSV
i

σi−→ qSV
i+1, A

SV (bSV
0) = bSV

1 iff ∃ times ti ∈ R+ s.t.
∀ t′ ∈ [ti, ti+1) with t0 = 0, lSV (t′) == qSV

i . Otherwise,
APOV (bPOV

0) = ε.
Because Q1 has the exact same discrete transition graph

as that of Q0, for every hybrid behavior bSV
0 ∈ JQ0K

BSV
0 ,

ASV (bSV
0) ∈ JQ1K

BSV
1 , i.e., Q0 ⊑ASV

Q1.

6.3 Abstraction between compositions
At the discrete level of abstraction, the global unified

behavior domain B1 is Σ∗, where Σ = ΣPOV ∪ ΣSV =
{α1, α2, β1, β2}. Behavior localizations ↓j1, j = P,Q are dis-
crete event projection functions that replace a string not
in the local label set by the empty string ε. In this case,
the syntactic procedures of adding self loops on the missing
labels α1, α2 in P1 and β2 in Q1 take care of the globaliza-
tions and their composition is simply their product. At the
hybrid level, we add an unrestricted continuous variable y
in P0 leaving Q0 unchanged, and take the parallel composi-
tion of the resulting hybrid automata. The resultant system
models Mi := Pi||

GQi, i = 0, 1 are as shown in Fig. 5.
The variables common to local behavior domains BPOV

i

and BSV
i are x and β1. We have to make sure that the lo-

calizations APOV ⇓∩ and ASV ⇓∩ of abstraction functions

APOV and ASV onto these common variables , i.e., the
mappings from behaviors in x to behaviors in {β1}

∗ agree.
APOV ⇓∩ is essentially the same as APOV , with the row
for β2 discarded. ASV puts indirect restrictions on x due
to the guard and invariant conditions of the hybrid tran-
sitions (waiting, x) → (stopped, x) that are mapped with

the discrete transition waiting
β1−→ stopped. Such a hybrid

transition occurs iff x ≤ l and x ≥ l hold before and after
the transition, i.e., while crossing the boundary x = l in
the increasing direction, which agrees with APOV ⇓∩. In the
self-loop β1 transitions, x does not appear and is therefore
unrestricted, and in agreement with APOV ⇓∩.

Therefore, using Prop. 3, we can conclude (without having
to analyze models M0 and M1 directly) that M0 ⊑A M1.

stopped

waiting

inInt cleary0 == 0

x0 ∈ [−420,−400]

ẏ == 0

ẏ == 0

ẋ ∈ [vx, vx]

ẏ ∈ [vy, vy]

ẏ ∈ [vy , vy]

x ≤ l

ẋ ∈ [vx, vx]

ẋ ∈ [vx, vx]

y ≤ h
ẋ ∈ [vx, vx]

x ≥ l

x < l

y ≥ h

(a) Detailed model M0 := P0||
GQ0

far∼waiting

close∼stopped

inInt∼stopped

far∼inInt

close∼inInt

inInt∼inInt

far∼clear

close∼clear

inInt∼clear

β1

β2

β1

β2

β1

β2

α1 α2

α2

α2

(b) Abstract model M1 := P1||
GQ1

Figure 5: Hybrid and discrete system models.

6.4 Need for consistency between abstraction
functions

Note that if for some reason, the parameter l is different in
models P0 and Q0, the consistency condition in Prop. 3 can-
not be satisfied and the heterogeneous approach cannot be
used. Suppose the reference marker in the POV component
is l′ rather than l, but the SV thinks it is l. Physically this
may correspond to, e.g., a measurement error or parallax
for a human SV driver. In this case, there is a disagree-
ment between the two models as to what corresponds to the
β1 event of POV going from far to close. Since the two
abstraction functions disagree on the mapping between be-
haviors in the variable x and the event β1 that are common

to the local behavior domains of the two components, the
design freedom in the non-uniqueness of globalizations while
adding the remaining variables and events does not help us
resolve this mismatch. Therefore, we cannot find any agree-
ing globalizations of the two abstraction functions. In such
a case, although heterogeneous abstraction still holds for the
two components individually, it does not carry over to their
composition.

7. CONCLUSION
This paper presents a compositional approach to heteroge-

neous abstraction. Behavior abstraction functions are pro-
posed to establish semantic associations between heteroge-
neous formalisms across different levels of abstraction, and
localizations/globalizations are used to associate local com-
ponent behavior domains and global system behavior do-
mains at a given level of abstraction. Sufficient conditions
are developed under which heterogeneous abstraction be-
tween component models implies heterogeneous abstraction
between their compositions. The theoretical concepts are
illustrated using the example of a cooperative intersection
collision avoidance system (CICAS).

As noted in the paper, abstraction relations as well as
globalization and localization typically can be inferred di-
rectly from the structure and syntactic rules for constructing
models. Future work will address the possibility of hetero-
geneity between the interacting component models within
a given level of abstraction. This requires the development
of heterogeneous generalizations of abstraction globalization
and globalized semantic composition.

Acknowledgments
The authors gratefully acknowledge support by NSF grants
CNS 1035800-NSF and CCF-0926181.

8. REFERENCES
[1] Cooperative intersection collision avoidance systems

(CICAS). http://www.its.dot.gov/cicas/.

[2] M. Althoff, A. Rajhans, B. H. Krogh, S. Yaldiz, X. Li,
and L. Pileggi. Formal Verification of Phase-Locked
Loops Using Reachability Analysis and
Continuization. In Proceedings of the IEEE/ACM
2011 International Conference on Computer-Aided
Design (ICCAD), San Jose, Nov 2011.

[3] R. Alur, T. Dang, and F. Ivancic. Predicate
abstraction for reachability analysis of hybrid systems.
ACM Transactions on Embedded Computing Systems,
5(1):152–199, 2006.

[4] R. Alur, T. A. Henzinger, G. Laffarriere, and G. J.
Pappas. Discrete Abstractions of Hybrid Systems.
Proceedings of the IEEE, 88:971–984, 2000.

[5] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno,
C. Passerone, and A. Sangiovanni-Vincentelli.
Metropolis: an integrated electronic system design
environment. Computer, 36(4):45–52, april 2003.

[6] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis.

Compositional verification for component-based
systems and application. IET Software, 4(3):181–193,
2010.

[7] A. Benveniste, L. P. Carloni, P. Caspi, and A. L.
Sangiovanni-Vincentelli. Composing Heterogeneous
Reactive Systems. ACM Transactions on Embedded
Computing Systems, 7(4), July 2008.

[8] S. S. Bhattacharyya, E. Cheong, and I. Davis.
PTOLEMY II Heterogeneous Concurrent Modeling
and Design in Java. Technical report, University of
California, Berkeley, 2003.

[9] A. Chutinan and B. H. Krogh. Verification of
Infinite-State Dynamic Systms Using Approximate
Quotient Transition Systems. IEEE Transactions on
Automatic Control, 46:1401–1410, 2001.

[10] T. Dang, O. Maler, and R. Testylier. Accurate
Hybridization of Nonlinear Systems. In Proceedings of
the International Conference on Hybrid Systems:
Computation and Control (HSCC), 2010.

[11] G. Frehse. Compositional Verification of Hybrid
Systems using Simulation Relations. PhD thesis,
Radboud Universiteit Nijmegen, 2005.

[12] G. Frehse. PHAVer: Algorithmic Verification of
Hybrid Systems past HyTech. International Journal
on Software Tools for Technology Transfer (STTT),
10(3), 2008.

[13] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi.
Algorithmic Analysis of Nonlinear Hybrid Systems.
IEEE Transactions on Automatic Control, 43:225–238,
1998.

[14] T. A. Henzinger, S. Qadeer, S. K. Rajamani, and
S. Tasiran. An assume-guarantee rule for checking
simulation. ACM Trans. Program. Lang. Syst.,
24(1):51–64, Jan. 2002.

[15] A. A. Julius. On interconnection and equivalence of
continuous and discrete systems: a behavioral
perspective. PhD thesis, University of Twente, 2005.

[16] D. Kaynar and N. Lynch. Decomposing Verification of
Timed I/O Automata. In In the Proceedings of the
Joint Conference on Formal Modelling and Analysis of
Timed Systems (FORMATS) Formal Techniques in
Real-Time and Fault Tolerant System (FTRTFT),
2004.

[17] A. Ledeczi, J. Davis, S. Neema, and A. Agrawal.
Modeling methodology for integrated simulation of
embedded systems. ACM Trans. Model. Comput.
Simul., 13:82–103, January 2003.

[18] E. A. Lee and A. Sangiovanni-Vincentelli. A
Framework for Comparing Models of Computations.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 17(12):1217–1229,
Dec 1998.

[19] A. Rajhans and B. H. Krogh. Heterogeneous
verification of cyber-physical systems using behavior
relations. In Proceedings of the 15th ACM
International Conference on Hybrid Systems:
Computation and Control (HSCC), 2012.

