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Abstract— This paper concerns the use of linear hybrid
automata (LHA) to verify properties of hybrid dynamic systems
based on the concept of simulation relations. Following a review
of basic concepts and a description of the LHA analysis tool
PHAVer, assume-guarantee reasoning is described as a method
for compositional verification. The results from the literature
are summarized with an example to illustrate the concepts.
Finally, the paper outlines some research directions for making
this approach more useful.

I. INTRODUCTION

Dynamic models of computer-controlled physical systems
typically require both discrete and continuous state variables
to represent the interaction of discrete control logic with
physical systems. Hybrid automata have been a widely used
formalism for modeling such hybrid dynamic systems. Veri-
fying properties of hybrid automata with arbitrary continuous
dynamics is a hard problem, but effective analysis algorithms
and tools have been developed for restricted classes of
hybrid systems. In this paper, we focus our attention to
linear hybrid automata (LHA) and discuss the problem of
checking conformance between a system and its specifica-
tion. Conformance checking concerns guaranteeing that all
behaviors of the system need to be contained in the set
of behaviors allowed by the specification. The notion of
simulation relations, originally defined to study equivalence
between two programs, can be used to verify that a given
LHA conforms to a specification that is also modeled using
another LHA. This paper reviews the concept of simulation
relations for LHA where the behaviors of LHA are defined
in terms of timed traces, i.e. sequences of time elapses and
discrete transitions. Because LHAs have a continuum of
traces, symbolic algorithms and tools for checking simulation
relations between them are needed. Moreover, for complex
systems made up of subsystems, we need compositional
approaches that check simulation relations on subsystems,
instead of on the complete system.

The next section presents the preliminaries. Sec. III defines
the formal notion of simulation relations and discusses its
applicability to the LHA domain. PHAVer, a tool which
implements simulation relation check symbolically on LHA,
is presented in Sec. IV. Sec. V presents assume-guarantee
(AG) reasoning as one of the ways to approach the problem
of checking simulation relations compositionally. Through-
out the paper, the theoretical concepts are illustrated using
a temperature control system example. Finally, Sec. VI as-

sesses some limitations of the LHA-based simulation relation
checking approach and identifies opportunities for further
research.

II. PRELIMINARIES

A hybrid automaton (HA) is a tuple (Loc, Var, Lab,
Tran, Act, Inv, Init), where Loc, Var, Lab are finite sets of
locations, variables and synchronization labels respectively.
Tran is a finite set of discrete transitions, each of which is a
4-tuple (l,a,µ, l′) often written as (l

a,µ→ l′). In each transition
tuple, a is a label and µ is the continuous transition relation
that relates the values of Var before and after the transition.
Let V (Var) denote all possible values of the variables Var.
An activity is a function f : R+→ V (Var), used to capture
the differential dynamics. If the set of all possible activities
on Var is denoted as acti(Var), then Act : Loc→ 2acti(Var) is a
mapping between a location and its allowed set of activities.
The invariant set Inv : Loc → 2V (Var) is a mapping from
locations to their corresponding sets of allowed valuations.
The states of HA are pairs (l,v), with l ∈ Loc and v∈V (Var).
A non-empty set Init ⊆ Loc×V (Var) is the set of initial
states such that (l,v) ∈ Init⇒ v ∈ Inv(l).

Hybrid automata are a useful framework for model-
ing computer-controlled physical systems because they can
model both the continuous dynamics as well as the discrete
control logic using transitions. They are more than just
switching systems in that they also have labels on the
transitions as synchronizing events. Therefore, the notion of
formal verification from the labeled transition systems (LTS)
domain can readily be applied and extended in case of HA.

Linear hybrid automata (LHA) are HA in which, the
activities are constrained by linear formulas over the time-
derivatives of the variables, and the continuous components
of invariants, transition relation and initial states are de-
scribed by linear formulas over the variables. The attraction
of LHA is that the reachable sets can be exactly computed
using polyhedra. Henzinger et al. showed that any complex
hybrid dynamics can be approximated arbitrarily well by
LHA [8]. This result, coupled with the availability of efficient
and exact algorithms for polyhedra makes LHA a potentially
useful model for analyzing hybrid systems.

Fig. 1 shows a temperature control system using a ther-
mostat modeled as an LHA. The allowed time derivatives
of the room temperature t are defined by t ′ ∈ [0.5,0.7] in
the heating mode and t ′ ∈ [−0.4,−0.2] in the cooling mode.
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automaton thermostat

state_var: t,c;

synclabs: noChange, request_heatOn, request_heatOff,

heatOn, heatOff;

loc heating: while 0 <= t & t <= 50 & c <= 5

wait {0.5 <= t’ & t’ <= 0.7 & c’==1};

when c == 5 & t>=35 sync request_heatOff

do{c’==0 & t’==t} goto heating;

when c == 5 & t<35 sync noChange

do{c’==0 & t’==t} goto heating;

when True sync heatOff do {t’==t & c’==c} goto cooling;

loc cooling: while 0 <= t & t <= 50 & c <= 5

wait {-0.4 <= t’ & t’ <= -0.2 & c’==1};

when c == 5 & 25<t sync noChange

do {c’==0 & t’==t} goto cooling;

when c == 5 & t<=25 sync request_heatOn

do {c’==0 & t’==t} goto cooling;

when True sync heatOn do {t’==t & c’==c} goto heating;

initially: heating & 26 <= t & t <= 28 & c == 0;

26· t· 28

c==0

heatOff

heatOn

Fig. 1. LHA H1: Thermostat system. t represents the temperature, c rep-
resents the clock for sampling. Primed variables inside locations represent
the time derivatives. Primed variables on discrete transitions represent the
instantaneous change in variables.
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Fig. 2. Pictorial representation of simulation relation.

The allowed time derivative of the clock variable c is c′ = 1.
The thermostat samples the temperature every 5 time units
and gives out a request heatOn, request heatOff, or
noChange, based on where the temperature is with respect to
a dead zone (±2 degrees) about the temperature set-point (30
degrees). On heatOn and heatOff the room temperature
dynamics switch between heating and cooling.

III. SIMULATION RELATIONS

Simulation relations have been used in the transition
systems literature for over 20 years as a way to analyze the
similarity between LTSs [9]. They are defined as follows.

Definition 1 (Simulation Relations for LTS): Given LTSs
P = (SP,ΣP = Σ,→,SP0) and Q = (SQ,ΣQ = Σ,→,SQ0), a
relation �, which is a subset of SP × SQ, is a simulation
relation iff ∀(p,q) ∈�1, ∀α ∈ Σ: p α→ p′ ⇒ ∃q′ ∈ SQ such
that (q α→ q′∧ (p′,q′) ∈�).

Fig. 2 illustrates this concept pictorially, where the circles
in SQ represent the set of states in Q that simulate the states
p and p′ in P. Every behavior of automaton P, signified by
a transition on the label α , has at least one corresponding
matching behavior in Q. Frehse generalized this definition
to allow cases where ΣP 6= ΣQ, i.e. cases where there are
internal events in P that are not visible in Q and vice versa
[4]. The LTS Q simulates the LTS P, written as P � Q, if
all the initial states are in a simulation relation. Using the
definition of simulation relations for LTSs, Frehse defined the
simulation relations for LHAs based on their timed transition
semantics.

For conformance checking, we want to verify whether the
external behavior, i.e. (timed) traces starting from some given

1(p,q) ∈� is often compactly written as p� q.

initial states of an LHA, is contained within those allowed by
some specification. To prove this trace inclusion, it suffices
to prove whether the language, i.e. the set of traces from all
possible initial states, is contained in that of the specification.
Both trace containment checking and language containment
checking are hard, since they involve the entire traces of the
sytem. Simulation relations serve as a sufficient condition
for language (and therefore trace) inclusion. Furthermore,
simulation relations are a local property on the states, which
makes them relatively simpler to compute. This property
makes them useful for conformance checking.

For example, suppose we wanted to check whether the
temperature in the thermostat system LHA H1 from Fig.
1 always remains between 20 and 40 degrees. We could
model this specification in terms of another LHA HQ with a
single location whose Inv is the desired temperature range t ∈
[20,40]. Checking whether t always remains in the interval
[20,40] corresponds to checking whether H1 � HQ.

IV. POLYHEDRAL HYBRID AUTOMATON VERIFIER

Polyhedral Hybrid Automaton Verifier (PHAVer) [5] is
a tool that implements a symbolic algorithm for finding a
simulation relation between two LHAs. In order to perform
polyhedral computations efficiently, PHAVer uses the Parma
Polyhedra Library (PPL) [1]. PPL supports various set-based
operations on polyhedra, such as intersection, union, set
difference, embedding into a bigger space, and projection
onto a smaller subspace, all of which are useful for anal-
ysis of LHA. Moreover, both PPL and PHAVer use exact
integer arithmetic with arbitrary precision, which makes the
polyhedral computations free from arithmetic errors.

PHAVer has a simple and intuitive textual interface. The
textual representation of the LHA from Fig. 1 in PHAVer
syntax is:
automaton thermostat
state_var: t,c;
synclabs: noChange, request_heatOn, request_heatOff,
heatOn, heatOff;
loc heating: while 0 <= t & t <= 50 & c <= 5

wait {0.5 <= t’ & t’ <= 0.7 & c’==1};
when c == 5 & t>=35 sync request_heatOff

do{c’==0 & t’==t} goto heating;
when c == 5 & t<35 sync noChange

do{c’==0 & t’==t} goto heating;
when True sync heatOff do {t’==t & c’==c} goto cooling;
loc cooling: while 0 <= t & t <= 50 & c <= 5

wait {-0.4 <= t’ & t’ <= -0.2 & c’==1};
when c == 5 & 25<t sync noChange

do {c’==0 & t’==t} goto cooling;
when c == 5 & t<=25 sync request_heatOn

do {c’==0 & t’==t} goto cooling;
when True sync heatOn do {t’==t & c’==c} goto heating;

initially: heating & 26 <= t & t <= 28 & c == 0;
end

The specification HQ from the previous section can be
written in PHAVer syntax as
automaton spec
state_var: t;
loc always: while 20 <= t & t <= 40 wait {True};

initially: always & 20 <=t & t<= 40;
end

To construct a simulation relation between two automata,
PHAVer uses an algorithm that works with polyhedral sets of



states at a time, subtracting the set of bad states (states for
which, the simulation relation cannot be satisfied). This is
done iteratively until a fixed-point is obtained. Given LHA
P and Q with states (k,u) and (l,v), u ∈ Rn and v ∈ Rm,
let Btr(k, l) be the set of states in Rm+n, such that the states
from P have no matching discrete transitions in Q. Similarly,
let Bte(k, l) be the set of states in Rm+n, such that the states
from P have no matching timed transitions in Q. Btr(k, l)
and Bte(k, l) can be computed using the symbolic operations
of intersection, set-difference, projection, embedding and
reordering of variables. The simulation relation R is the
largest fixed-point of the operation

R(k, l) := R(k, l)∩¬Btr(k, l)∩¬Bte(k, l). (1)

In the thermostat example, the question whether
thermostat � spec can be posed to PHAVer using the
command is sim(thermostat,spec), to which PHAVer
will return a Yes or No answer. It turns out, for this example,
that the simulation relation fails because the heatOn and
heatOff transitions can happen at any time. Thus, for some
evolutions of the thermostat system, it may take arbitrarily
long before these transitions occur, and the room may keep
cooling or heating, driving the temperatures below or above
the specified limits.

V. ASSUME-GUARANTEE REASONING

Complex systems are often modeled modularly as a paral-
lel composition of subsystems. In such cases, compositional
approaches that analyze only the subsystems are desirable,
since the system-wide model and analysis may become
too expensive. If all the subsystems satisfy the part of the
specification concerning them (which may involve breaking
down the overall specification into modular specification
on the subsystems), the overall system will also satisfy its
specification. However, in case of interconnected systems,
subsystems often cannot satisfy their specifications by them-
selves without making assumptions about their environment,
i.e. the other subsystems. For example, in the earlier section,
the thermostat cannot satisfy the specification by itself, be-
cause it can only request heatOn and request heatOff.
The events heatOn and heatOff that decide when the
temperature dynamics will actually switch between heating
and cooling depend on the environment of the thermostat,
and so are beyond the scope of the thermostat subsystem.

In case of systems made up of two subsystems, a non-
circular structure arises if one subsystem can make some
assumption about the behavior of the other subsystem in
order to guarantee the specification, and if the other sub-
system guarantees this assumption without needing to make
any further assumptions about the first one. This structure
is called (non-circular) assume-guarantee (AG) reasoning. In
such a case, using AG reasoning, it can be deduced that
the overall system will satisfy its specification [4]. This
type of reasoning is particularly interesting if the assumption
is significantly simpler than the actual subsystem, resulting
in an overall reduction in the computational complexity of
verification.
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Fig. 3. LHA H2: The furnace. t1 and t2 are the temperature readings at
two different points on the furnace heat exchanger. ‘mute’ is used to label
transitions internal to the furnace, that are invisible to the outside world.

Formally, this notion of triangular assume-guarantee (AG)
reasoning is summarized from [4] as follows:

P1||A � Q
P2 � A

P1||P2 � Q

In our example, consider that there is another subsys-
tem H2 in the temperature control system. Consider that
this second subsystem is a forced-air furnace, with a gas
burner which heats up a panel in the heat exchanger and
forced air blown through this panel is circulated through
the room. Whenever the thermostat executes the command
request heatOn, the burners get turned on and the heat
exchanger warms up, albeit unevenly. Because of this uneven
warming up, there are n temperature sensors deployed at
different locations on the heat exchanger. All the sensors
have to show that a specified temperature has been reached
before the blower can be turned on to start supplying the heat
to the room. After the request heatOff event, the burners
are switched off immediately, but the blowers are kept on
for some time to let the heat exchanger cool. This furnace
behavior can be modeled by LHAs, like the one shown in
Fig. 3 for n = 2.

The thermostat needs to make some assumptions about
the furnace behavior before it can satisfy the temperature
specification. For HQ that concerns only the temperature of
the room, the internal temperatures inside the heat exchang-
ers are irrelevant. A possible assumption about the furnace,
modeled by an LHA HA as shown Fig. 4, might abstract away
these temperature dynamics of the furnace and instead, only
make an assumption about the worst case time the furnace
will take to get ready.
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automaton thermostat

state_var: t,c;

synclabs: noChange, request_heatOn, request_heatOff,

heatOn, heatOff;

loc heating: while 0 <= t & t <= 50 & c <= 5

wait {0.5 <= t’ & t’ <= 0.7 & c’==1};

when c == 5 & t>=35 sync request_heatOff

do{c’==0 & t’==t} goto heating;

when c == 5 & t<35 sync noChange

do{c’==0 & t’==t} goto heating;

when True sync heatOff do {t’==t & c’==c} goto cooling;

loc cooling: while 0 <= t & t <= 50 & c <= 5

wait {-0.4 <= t’ & t’ <= -0.2 & c’==1};

when c == 5 & 25<t sync noChange

do {c’==0 & t’==t} goto cooling;

when c == 5 & t<=25 sync request_heatOn

do {c’==0 & t’==t} goto cooling;

when True sync heatOn do {t’==t & c’==c} goto heating;

initially: heating & 26 <= t & t <= 28 & c == 0;
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heatOff

heatOn
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heatOn
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Fig. 4. LHA HA: A candidate furnace assumption. c f represents a furnace
clock to measure the furnace delay.

Standard Algoritm Only Reachable States
Furnace Model non-AG AG non-AG AG

One sensor 2.10 1.10 0.10 0.20
Two sensors 121.45 2.80 0.40 0.30

Three sensors ∞ 23.51 1.40 2.80
Four sensors ∞ 272.67 23.71 96.02

TABLE I
EXPERIMENTAL RESULTS SHOWING COMPUTATION TIMES

IN SECONDS

We check in PHAVer whether HSIMPLE = H1||HA � HQ
and H2 � HA, and PHAVer returns a Yes for both of these
confirming that our triangular AG reasoning worked.

Varying the number of sensors n used in the furnace
model, experiments were run to compare the time elapsed
in verifying the specification without using AG reasoning
approach (HSY S � HQ) and using AG reasoning approach
(H1||HA �HQ and H2 �HA). Table I summarizes the results.
∞ means that the experiment did not terminate in as long
as one day. The first two columns depict the results for
the computation of simulation relations using the standard
fixed-point algorithm. The results show that the computa-
tional complexity increases exponentially with an increasing
number of state variables. Notice that as the problem size
grows, the AG reasoning approach seems to be clearly more
beneficial than the non-AG approach. In order to simplify
the simulation relation computation, PHAVer also allows a
heuristic for speed-up, which looks only at the states reach-
able from the given initial conditions. The results with this
heuristic are depicted in the last two columns. The heuristic
works quite well, but it is not a complete analysis, since it
only looks at the behaviors of the system starting from given
initial conditions. For this example, the heuristic seems to
simplify the simulation relation computation enough to make
the two computations in AG slower than the one in non-AG.
We conjecture that with increasing size, even in this case AG
will eventually outweigh non-AG.

VI. DISCUSSION

Simulation relation checking of LHA provides a way to
carry out verification of hybrid systems with AG reasoning
to do it compositionally. However, this approach has some
shortcomings and further research is needed to address these
shortcomings.

One trouble in computing simulation relations using a
fixed-point algorithm is that it is pretty expensive, since
all possible states need to be looked at. An alternative
to computing simulation relations explicitly as fixed-points
would be to develop analytical conditions that will guarantee
their existence. For example, there has been some work about
the approximate (bi-)simulation for transition systems with
observations (outputs) in metric spaces [7]. In this work,
the simulation relations become simulation functions, whose
level sets give the approximation metrics for simulation
relations.

Another issue in AG reasoning is that coming up with ap-
propriate assumption LHAs requires a significant amount of
human effort, expertise and intuition. The assumption needs
to be both strong enough to satisfy the system specification
and weak enough so that it can be satisfied by the component.
Tools need to be developed to assist the system designer in
developing these assumptions. For purely discrete systems,
there has been some work done to automatically generate
assumptions by learning the language of the assumption
automaton [11], [2], [10]. However, learning the entire
language might turn out to be too expensive, as reported
in [3]. For LHA, it would be worth investigating whether
a user-guided approach can be developed to determine the
assumption LHA. One promising approach towards doing
this might be to use the procedure in [6] for finding sets
of feasible parameters for LHA models, getting the discrete
structure as a starting point from the user.
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