

Abstract— Traditional methods for the development of a

neuroprosthesis to perform closed-loop stimulation can be

complex and the necessary technical knowledge and experience

often present a high barrier for adoption. This paper takes a

novel Model-Based Design approach to simplifying such closed-

loop system development, and thereby lowering the adoption

barrier. This work implements a computational model of

different spike detection algorithms in Simulink® and compares

their performances by taking advantage of synthetic neural

signals to evaluate suitability for the intended embedded

implementation.

Clinical Relevance— Closed-loop systems have been

demonstrated to be suitable for brain repair strategies. Coupling

two different brain areas by means of a neuroprosthesis can

potentially lead to restoration of communication by inducing

activity-dependent plasticity.

I. INTRODUCTION

Existing and upcoming in vivo intracranial recording
systems provide high temporal and spatial resolution from
thousands of sites during behavioral tasks in animals [1]. Other
technologies for in vivo recording, including active CMOS
probes, are able to isolate a single neuron from a large brain
area [2]. This current capability to acquire signals from such a
large number of electrodes deserves a corresponding
proficiency in online signal processing for a wide spectrum of
applications, e.g. BCI, adaptive neuromodulation,
neuromorphic systems, neuroprosthetics, etc. [3]–[5].

The design and development of a real-time system,
however, can be daunting in terms of complexity for a non-
expert. Indeed, learning how to implement a signal processing
algorithm on hardware often prevents many neuroscientists
from realizing their novel and innovative systems. In this
context, providing researchers with solutions that can reduce
the entry barrier is of fundamental significance.

Spike detection is the first, basic, and essential step of
neuronal data analysis for neuroengineering applications
requiring real-time data processing [6], [7]. In this work, our
goal is to design and test different spike detection algorithms
in Simulink® [12] to evaluate the best candidate for the
intended embedded (µC or Field Programmable Gate Array -
FPGA) implementation. This Model-Based Design approach
enables us to (i) simulate, analyze, and forecast pros and cons

° Equal Senior contribution
*This work is supported by MathWorks. The opinions and views

expressed in this publication are those of the authors, and not necessarily

those of MathWorks.
M. Di Florio is with the Department of Informatics, Bioengineering,

Robotics, System Engineering (DIBRIS), University of Genova, Via

all’Opera Pia 13, 16145, Genova, Italy (e-mail: s4529318@studenti.unige.it).
V. Iyer is with MathWorks, 3 Apple Hill Drive, Natick, MA 01760, USA.

(e-mail: vijayi@mathworks.com).

of the code execution on target hardware, and (ii) conduct
preliminary checks about how the algorithms would behave in
real-time. The results of our exemplar computational
implementation thus represent a fundamental step for lowering

A. Rajhans is with MathWorks, 3 Apple Hill Drive, Natick, MA 01760,
USA. (e-mail: arajhans@mathworks.com).

S. Buccelli is with the Rehab Technologies IIT-INAIL Lab, Istituto

Italiano di Tecnologia, Via Morego 30, 12 16163 Genova, Italy
(corresponding author, e-mail: stefano.buccelli@iit.it).

M. Chiappalone is with the Department of Informatics, Bioengineering,

Robotics, System Engineering (DIBRIS), University of Genova, Via
all’Opera Pia 13, 16145, Genova, Italy (corresponding author, e-mail:

michela.chiappalone@unige.it).

Model-based online implementation of spike detection algorithms

for neuroengineering applications

M. Di Florio, Student Member, IEEE, V. Iyer, A. Rajhans, Senior Member, IEEE, S. Buccelli°,

Member, IEEE, M. Chiappalone°, Member, IEEE

Figure 1. Main elements and concepts in spike detection algorithm s.

Panels A1, A2 and A3 show, from the top to the bottom, portions of a
filtered signal, a SNEO output and a SWTTEO output. Different colors

highlight the different thresholding method used for identifying a spike:

(i) light blue for the hard threshold, (ii) orange for the adaptive threshold
from the Sample Thresholding category, (iii) green for the PTSD, (iv)

yellow for the adaptive threshold of the SNEO, and (v) orange for the

adaptive threshold of the SWTTEO. The figures B1, B2 and B3 show
how and where a spike is identified. Local Maxima Hard Threshold and,

Local Maxima Adaptive Threshold identify the first peak after the

threshold crossing (blue and red circles). For the PTSD a spike is
detected when the two conditions (differential threshold and peak

lifetime period) are met (green triangle). For the remaining, the first

sample above threshold is identified as a spike.

the adoption barrier by neuroscientists and neuroengineers for
the development of embedded applications.

The use of high-level programming tools that generate
embedded code for µC and FPGAs can simplify the design
workflow and speed up the deployment of closed-loop
applications in the neuroscientific and neuroengineering
fields. The Simulink models and MATLAB® source code,
along with Python code used to generate the dataset, are
available on GitHub (https://github.com/MattiaDif/model-
based-spike-detection).

II. IMPLEMENTED SPIKE DETECTION ALGORITHMS

According to the literature [8], spike detection algorithms
can be divided into three main classes based on the
methodological approach: (i) Sample Thresholding, (ii)
Energy operator, and (iii) Template Matching. In this study,
algorithms from methodological approaches (i) and (ii) have
been implemented and compared.

A. Sample Thresholding

These algorithms assume that the amplitude of a spike is
greater than the amplitude of the noise, therefore, a spike can
be detected by thresholding the signal. As part of this class, six
different algorithms have been designed, briefly detailed here
below. A graphical representation of the functioning of these
algorithms is reported in Figure 1 – A1:

• Sample Hard Threshold. A sample above threshold is
identified as a potential spike. If this sample appears at
least one refractory period after the previous spike, a new
spike is detected [8].

• Local Maxima Hard Threshold. A peak in the signal has
to overcome the threshold in order to detect a potential
spike [8].

• Sample Adaptive Threshold. A metric such as RMS, STD,
Median Absolute Value (MAV), etc. is computed and a
threshold is set multiplying the metric value by a constant.
If a sample is above the adaptive threshold, it is identified
as a putative spike [8].

• Local Maxima Adaptive Threshold. A peak in the signal
has to overcome the adaptive threshold in order to detect
a potential spike [8].

• Precision Timing Spike Detection (PTSD). The PTSD
logic analyzes consecutive portions of the signal and
includes a differential threshold (DT) and a peak lifetime
period (PLP) evaluation of the signal to detect a spike [6].

B. Energy Operator

Whenever an abrupt amplitude transient occurs, a high-
frequency pattern different from the noise is introduced in the
signal. Nonlinear energy operator (NEO), also known as
Teager energy operator (TEO), is computed, estimating the
instantaneous product of amplitude and frequency leading to
an enhancement in the high-frequency content of the signal
(i.e. a spike). We implement two algorithms from this category
(see Figure 1 – A2, A3):

• Smoothed Nonlinear Energy Operator (SNEO).
Smoothed NEO (SNEO) is computed by a convolution
between a window and the NEO. The threshold is

automatically set by the algorithm according to the MAV
of the SNEO [9].

• Stationary Wavelet Transform Teager Energy Operator
(SWTTEO). SWTTEO consists in a low-pass filter of the
TEO (or NEO) using 𝑛 level of approximation
coefficients of the Discrete Wavelet Transform (DWT).
However, the DWT is substituted by the Stationary
Wavelet Transform (SWT) for avoiding the down
sampling of the approximation coefficients. The threshold
is automatically set by the algorithm according to the
MAV of the SWTTEO output [8].

III. SYNTHETIC DATASET

Validation of spike detection requires a reliable ground-

truth. Recordings that combine acquisitions of extracellular

and juxtacellular/patch clamp methods cannot provide a

consistent ground-truth for our models, because the activity

of only a few neurons can be simultaneously measured.

Therefore, synthetic data was used allowing for the generation

of sufficient statistics for comparative assessment.

A. Approach

To generate synthetic recordings, we employed MEArec.
MEArec is an open-source Python-based simulator that
provides fast, intuitive, biophysically accurate extracellular
recordings for testing and optimization of spike sorting
algorithms [10]. This tool allows exploration of different
aspects that characterize in vivo recordings (e.g. bursting,
drifting, far neuron noise, overlap, etc.), thus reproducing
reliable MEA signals comparable to the reality. Moreover,
MEArec includes the possibility to encompass different
neuron models and types (e.g. from Allen Brain Institute
database and from the Blue Brain Project database) and to
generate recordings based on various probe models [10]. In
this work, the dataset (see Figure 2) was generated using the
following main features: (i) tetrode probe (ii) 2 neurons: 2
excitatory units, (ii) 1 minutes of recording, (iv) 𝐹𝑠 = 30 𝑘𝐻𝑧,
(v) drift and (vi) additive colored noise level STD:
10µV, 20µV, 30µV.

IV. DESIGN CONSIDERATIONS IN REAL-TIME SIMULATION

OF SPIKE DETECTION ALGORITHMS

Each spike detection algorithm has been designed for both
single- and multi-channel detection. In this Section, we discuss
the most relevant challenges regarding the development of
spike detection algorithms in Simulink with their target
embedded implementations in mind.

A. Filter

Generally, concerning neural recordings, a bandpass filter is
required [7]. To this end, we implemented both a lowpass IIR
filter (Butterworth, cutoff frequency of 3 kHz, 1st order) and a
highpass IIR filter (Butterworth, cutoff frequency of 3kHz, 3rd
order) by means of an automated tool (the Filter Designer App
in the Signal Processing Toolbox [13])). For an online
implementation of a filter, a given number of previous samples
dependent on the filter order and architecture needs to be
stored for the processing of the incoming samples. In
Simulink, this task is automatically accomplished by the
generated code.

https://github.com/MattiaDif/model-based-spike-detection
https://github.com/MattiaDif/model-based-spike-detection

B. Refractory Period

Computation of the refractory period online, requires a

counter. Every time a spike is detected as per the logic of the

algorithm, the refractory period starts counting. If a spike is

detected at least one refractory period after the previous one,

a new spike is detected, and the counter is reset to zero.

C. Local Maxima Check

Performing an online detection of a peak in the signal

necessitates storing a window of the samples at time 𝑡𝑛, 𝑡𝑛−1

and 𝑡𝑛−2. The peak detection occurs when the sample at 𝑡𝑛−1

is above (or below for the local minimum) the ones recorded

before (𝑡𝑛−2) and after (𝑡𝑛).

D. Adaptive Threshold

The adaptive threshold consists of an automatic update of

the threshold according to the level of noise based on a

specific metric such as STD, RMS, or MAV. As per [11], the

MAV has been implemented due to its nature to be less

conditioned by the spiking activity. To compute an adaptive

threshold, 𝑁 previous consecutive samples must be stored to

calculate the MAV for estimating the threshold for the next

segment of signal. This could be done using a buffer of length

𝑁 (and different buffer overlaps depending on the frequency

at which it is considered acceptable to modify the threshold).

E. PTSD implementation

The PTSD algorithm requires two specific parameters

different from the other algorithms: (i) the DT and (ii) the PLP

[6]. A buffer keeps in memory the last 𝑋 samples of the

signals. 𝑋 needs to be comparable with the spike duration and

it strongly depends on the sampling frequency. The first and

the last sample of the buffer are read, and the two following

conditions are checked. If the absolute value of the difference

between the first and the last sample of the buffer is greater

than or equal to DT, and the absolute value of the difference

between the index of the first sample and the index of last

sample is less than the PLP, a new spike is detected.

F. NEO

The discrete-time NEO is defined as:

𝛹[𝑥(𝑛)] = 𝑥2(𝑛) − 𝑥(𝑛 + 1)𝑥(𝑛 − 1) [9].

As indicated in the formula, a real-time implementation of

the operator for a real-time application, would necessitate two

previous samples to be stored. Indeed, to compute the current

SNEO sample at time 𝑡𝑛 (corresponding to 𝑥(𝑛 + 1)) the

square of the signal sample at time 𝑡𝑛−1 and the product

between the current signal sample 𝑡𝑛 and the sample at time

𝑡𝑛−2 are required. Note that the square operation for an

embedded implementation can be demanding and could

require a nontrivial amount of hardware resources.

G. Stationary Wavelet Transform

The SWT consists of applying two orthogonal filters (low-

pass and high-pass) by a convolution between the signal and

the wavelet coefficients. For online implementation, a signal

segment needs to first be stored in a buffer, and then the

convolution between the stored segment and the coefficients

can be performed. Afterwards, a new signal segment is saved

in a buffer and the convolution is performed again.

V. RESULTS

This section reports the preliminary results of the
performance analysis of the single channel algorithms
designed in Simulink. The results account for all the four
channels of the simulated tetrode, considering all the three
noise levels (cf. Figure 2).

A. Parameter Choice

To compute the performances, we varied one parameter
(typically the threshold) of each algorithm, according to the
ranges reported in Table 1. The refractory period has been set
to 1ms. The hard threshold and the threshold gain have been
selected according to the noise levels. Moreover, the length of
the smoothing windows and the wavelet for the SWTTEO
algorithm have been chosen consistently with previous
evidence [8].

Table 1: Spike detection parameters.

Algorithms Threshold MAV Others

Sample Hard
Threshold

-80µV to -40µV
Step 1µV

- -

Local Maxima
Hard Threshold

-80µV to -40µV
Step 1µV

- -

Sample Adaptive
Threshold

Threshold gain
from 2 to 7

Step 0.1

Buffer
1s

-

Local Maxima
Adaptive
Threshold

Threshold gain
from 2 to 7

Step 0.1

Buffer
1s

-

PTSD
DT from 20µV

to 100µV
Step 1.25µV

- PLP of 0.7ms

SNEO
Threshold gain

from 2 to 7
Step 0.1

Buffer
1s

Hamming windows
of 1ms

SWTTEO
Threshold gain

from 2 to 7
Step 0.1

Buffer
1s

Hamming windows
of 1ms, sym5

wavelet, 2 level of
decomposition

Figure 2. Synthetic data generated with MEArec for all the noise level

STD.

B. Spike Detection Performance

Figure 3 reports the ROC curves and the boxplots of the
area under the curve (AUC) according to the three different
noise levels. For low noise level (STD 10 µV), the Sample
Hard Threshold, Local Maxima Hard Threshold and PTSD
algorithms suffers from their little capability to adapt the
thresholding according to the signal features of each channel.
Indeed, each channel of the tetrode is characterized by
different spike amplitudes depending on the distance between
the electrode and the neuron, therefore, the adaptive threshold-
based algorithms perform better. For a noise level of 20 µV the
algorithms behave similarly, with an overall decrease in the
performance and a general increase in the variability of the
AUC. For the highest noise level, as expected, the overall
performances worsen, and the overall variability of the AUC
is increased. The PTSD shows the worse results. Moreover,
the SNEO and the SWTTEO performances abruptly decreases.
Particularly, the loss of performance of the SWTTEO could
depend on the type of the chosen wavelet and the number of
the level of decomposition. The energy-based algorithms are
more affected in case of noise as the high-frequency content of
the spike blends with the high-frequency of the noise and the
spikes exhibit lower amplitudes. Overall, our preliminary
analysis indicates that the hard - and adaptive threshold-based
algorithms show, on average, a more stable behavior than the
others and the detection of the peak instead of the first sample
above/below threshold does not improve the outputs.

VI. DISCUSSION AND CONCLUSION

This work represents the first, important step towards the
adoption of a Model-Based Design approach for
neuroengineering applications. The use of Simulink allowed
us to simulate the functioning of a set of online spike detection
algorithms before embedded/hardware implementation, thus

providing a lightweight mechanism for its use even by non-
experts. Indeed, Model-Based Design allows the developer to
focus on the algorithm with a minimal effort on the final
implementation. Depending on the final platform and the
required performances, C/C++ or VHDL/Verilog code can be
automatically generated. Our preliminary results point out the
capability of the majority of the algorithms to provide a
suitable spike detection for the different conditions. The
energy-based operator models are promising and deserve a
deeper analysis. A further investigation of the algorithm
behavior for higher level of noise is required. Furthermore,
neuroscientists and neuroengineers can take advantage of a
results suite to analyze in order to determine the best algorithm
for a specific real-time application.

It is worth to underlie that this project is under active
development and will be available for the community,
therefore new features will be introduced over time to expand
and improve the current capability, such as: (i) new algorithm
design, (ii) algorithm optimization, and (iii) GUI development.
We believe this approach will speed up the implementation of
complex closed-loop architectures with demanding timing
requirements for an increasing number of recording channels.

REFERENCES

[1] N. A. Steinmetz et al., “Neuropixels 2.0: A miniaturized high-
density probe for stable, long-term brain recordings,” Science (80-

.)., vol. 372, no. 6539, pp. 139–148, 2021.

[2] G. N. Angotzi et al., “SiNAPS: An implantable active pixel sensor
CMOS-probe for simultaneous large-scale neural recordings,”

Biosens. Bioelectron., vol. 126, no. August 2018, pp. 355–364,

2019.
[3] S. Buccelli et al., “A Neuromorphic Prosthesis to Restore

Communication in Neuronal Networks,” iScience, vol. 19, pp.

402–414, 2019.
[4] R. George et al., “Plasticity and Adaptation in Neuromorphic

Biohybrid Systems,” iScience, vol. 23, no. 10, pp. 1–26, 2020.
[5] D. J. Guggenmos et al., “Restoration of function after brain damage

using a neural prosthesis,” Proc. Natl. Acad. Sci. U. S. A., vol. 110,

no. 52, pp. 21177–21182, 2013.
[6] A. Maccione, M. Gandolfo, P. Massobrio, A. Novellino, S.

Martinoia, and M. Chiappalone, “A novel algorithm for precise

identification of spikes in extracellularly recorded neuronal
signals,” J. Neurosci. Methods, vol. 177, no. 1, pp. 241–249, 2009.

[7] M. Murphy et al., “Improving an open-source commercial system

to reliably perform activity-dependent stimulation,” J. Neural Eng.,
vol. 16, no. 6, p. ab3319, 2019.

[8] F. Lieb, H. G. Stark, and C. Thielemann, “A stationary wavelet

transform and a time-frequency based spike detection algorithm for
extracellular recorded data,” J. Neural Eng., vol. 14, no. 3, p.

aa654b, 2017.

[9] S. Mukhopadhyay and G. C. Ray, “A new interpretation of

nonlinear energy operator and its efficacy in spike detection,” IEEE

Transactions on Biomedical Engineering, vol. 45, no. 2. pp. 180–

187, 1998.
[10] A. P. Buccino and G. T. Einevoll, “MEArec: A Fast and

Customizable Testbench Simulator for Ground-truth Extracellular

Spiking Activity,” Neuroinformatics, vol. 19, no. 1, pp. 185–204,
2021.

[11] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised

spike detection and sorting with wavelets and superparamagnetic
clustering,” Neural Comput., vol. 16, no. 8, pp. 1661–1687, 2004.

[12] MathWorks®, "Simulink® R2021b," September 2019. [Online].

Available: https://www.mathworks.com/products/simulink.html
[13] MathWorks®, "Signal Processing Toolbox® R2021b," September

2019. [Online]. Available:

https://www.mathworks.com/products/signal.html

Figure 3: Performance analysis of the algorithms according to the

different level of noise of the dataset. The ROC curves and the AUC are

obtained by the average of 𝐹𝑃𝑟𝑎𝑡𝑒 and 𝑇𝑃𝑟𝑎𝑡𝑒 between the four channels

of the tetrode. The 75th and 25th percentile of the data are represented by
the top and the bottom of the boxes respectively. The whiskers range

from the end of the interquartile to the maximum and minimum

observation of the sample. The middle line represents the median.

