
  

  

Abstract— Traditional methods for the development of a 

neuroprosthesis to perform closed-loop stimulation can be 

complex and the necessary technical knowledge and experience 

often present a high barrier for adoption. This paper takes a 

novel Model-Based Design approach to simplifying such closed-

loop system development, and thereby lowering the adoption 

barrier. This work implements a computational model of 

different spike detection algorithms in Simulink® and compares 

their performances by taking advantage of synthetic neural 

signals to evaluate suitability for the intended embedded 

implementation. 

Clinical Relevance— Closed-loop systems have been 

demonstrated to be suitable for brain repair strategies. Coupling 

two different brain areas by means of a neuroprosthesis can 

potentially lead to restoration of communication by inducing 

activity-dependent plasticity. 

I. INTRODUCTION 

Existing and upcoming in vivo intracranial recording 
systems provide high temporal and spatial resolution from 
thousands of sites during behavioral tasks in animals [1]. Other 
technologies for in vivo recording, including active CMOS 
probes, are able to isolate a single neuron from a large brain 
area [2]. This current capability to acquire signals from such a 
large number of electrodes deserves a corresponding 
proficiency in online signal processing for a wide spectrum of 
applications, e.g. BCI, adaptive neuromodulation, 
neuromorphic systems, neuroprosthetics, etc. [3]–[5]. 

The design and development of a real-time system, 
however, can be daunting in terms of complexity for a non-
expert. Indeed, learning how to implement a signal processing 
algorithm on hardware often prevents many neuroscientists 
from realizing their novel and innovative systems. In this 
context, providing researchers with solutions that can reduce 
the entry barrier is of fundamental significance. 

Spike detection is the first, basic, and essential step of 
neuronal data analysis for neuroengineering applications 
requiring real-time data processing [6], [7]. In this work, our 
goal is to design and test different spike detection algorithms 
in Simulink® [12] to evaluate the best candidate for the 
intended embedded (µC or Field Programmable Gate Array - 
FPGA) implementation. This Model-Based Design approach 
enables us to (i) simulate, analyze, and forecast pros and cons 
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Figure 1. Main elements and concepts in spike detection algorithm s. 

Panels A1, A2 and A3 show, from the top to the bottom, portions of a 
filtered signal, a SNEO output and a SWTTEO output. Different colors 

highlight the different thresholding method used for identifying a spike: 

(i) light blue for the hard threshold, (ii) orange for the adaptive threshold 
from the Sample Thresholding category, (iii) green for the PTSD, (iv) 

yellow for the adaptive threshold of the SNEO, and (v) orange for the 

adaptive threshold of the SWTTEO. The figures B1, B2 and B3 show 
how and where a spike is identified. Local Maxima Hard Threshold and, 

Local Maxima Adaptive Threshold identify the first peak after the 

threshold crossing (blue and red circles). For the PTSD a spike is 
detected when the two conditions (differential threshold and peak 

lifetime period) are met (green triangle). For the remaining, the first 

sample above threshold is identified as a spike. 



  

the adoption barrier by neuroscientists and neuroengineers for 
the development of embedded applications.  

The use of high-level programming tools that generate 
embedded code for µC and FPGAs can simplify the design 
workflow and speed up the deployment of closed-loop 
applications in the neuroscientific and neuroengineering 
fields. The Simulink models and MATLAB® source code, 
along with Python code used to generate the dataset, are 
available on GitHub (https://github.com/MattiaDif/model-
based-spike-detection).  

II. IMPLEMENTED SPIKE DETECTION ALGORITHMS 

According to the literature [8], spike detection algorithms 
can be divided into three main classes based on the 
methodological approach: (i) Sample Thresholding, (ii) 
Energy operator, and (iii) Template Matching. In this study, 
algorithms from methodological approaches (i) and (ii) have 
been implemented and compared.  

A. Sample Thresholding 

These algorithms assume that the amplitude of a spike is 
greater than the amplitude of the noise, therefore, a spike can 
be detected by thresholding the signal. As part of this class, six 
different algorithms have been designed, briefly detailed here 
below. A graphical representation of the functioning of these 
algorithms is reported in Figure 1 – A1: 

• Sample Hard Threshold. A sample above threshold is 
identified as a potential spike. If this sample appears at 
least one refractory period after the previous spike, a new 
spike is detected [8]. 

• Local Maxima Hard Threshold. A peak in the signal has 
to overcome the threshold in order to detect a potential 
spike  [8]. 

• Sample Adaptive Threshold. A metric such as RMS, STD, 
Median Absolute Value (MAV), etc. is computed and a 
threshold is set multiplying the metric value by a constant. 
If a sample is above the adaptive threshold, it is identified 
as a putative spike [8]. 

• Local Maxima Adaptive Threshold. A peak in the signal 
has to overcome the adaptive threshold in order to detect 
a potential spike  [8]. 

• Precision Timing Spike Detection (PTSD). The PTSD 
logic analyzes consecutive portions of the signal and 
includes a differential threshold (DT) and a peak lifetime 
period (PLP) evaluation of the signal to detect a spike [6]. 

B. Energy Operator 

Whenever an abrupt amplitude transient occurs, a high-
frequency pattern different from the noise is introduced in the 
signal. Nonlinear energy operator (NEO), also known as 
Teager energy operator (TEO), is computed, estimating the 
instantaneous product of amplitude and frequency leading to 
an enhancement in the high-frequency content of the signal 
(i.e. a spike). We implement two algorithms from this category 
(see Figure 1 – A2, A3): 

• Smoothed Nonlinear Energy Operator (SNEO). 
Smoothed NEO (SNEO) is computed by a convolution 
between a window and the NEO. The threshold is 

automatically set by the algorithm according to the MAV 
of the SNEO [9]. 

• Stationary Wavelet Transform Teager Energy Operator 
(SWTTEO). SWTTEO consists in a low-pass filter of the 
TEO (or NEO) using 𝑛 level of approximation 
coefficients of the Discrete Wavelet Transform (DWT). 
However, the DWT is substituted by the Stationary 
Wavelet Transform (SWT) for avoiding the down 
sampling of the approximation coefficients. The threshold 
is automatically set by the algorithm according to the 
MAV of the SWTTEO output [8]. 

III. SYNTHETIC DATASET 

Validation of spike detection requires a reliable ground-

truth. Recordings that combine acquisitions of extracellular 

and juxtacellular/patch clamp methods cannot provide a 

consistent ground-truth for our models, because the activity 

of only a few neurons can be simultaneously measured. 

Therefore, synthetic data was used allowing for the generation 

of sufficient statistics for comparative assessment.  

A. Approach 

To generate synthetic recordings, we employed MEArec. 
MEArec is an open-source Python-based simulator that 
provides fast, intuitive, biophysically accurate extracellular 
recordings for testing and optimization of spike sorting 
algorithms [10]. This tool allows exploration of different 
aspects that characterize in vivo recordings (e.g. bursting, 
drifting, far neuron noise, overlap, etc.), thus reproducing 
reliable MEA signals comparable to the reality. Moreover, 
MEArec includes the possibility to encompass different 
neuron models and types (e.g. from Allen Brain Institute 
database and from the Blue Brain Project database) and to 
generate recordings based on various probe models [10]. In 
this work, the dataset (see Figure 2) was generated using the 
following main features: (i) tetrode probe (ii) 2 neurons: 2 
excitatory units, (ii) 1 minutes of recording, (iv) 𝐹𝑠 = 30 𝑘𝐻𝑧, 
(v) drift and (vi) additive colored noise level STD: 
10µV, 20µV, 30µV. 

IV. DESIGN CONSIDERATIONS IN REAL-TIME SIMULATION 

OF SPIKE DETECTION ALGORITHMS 

Each spike detection algorithm has been designed for both 
single- and multi-channel detection. In this Section, we discuss 
the most relevant challenges regarding the development of 
spike detection algorithms in Simulink with their target 
embedded implementations in mind. 

A. Filter 

Generally, concerning neural recordings, a bandpass filter is 
required [7]. To this end, we implemented both a lowpass IIR 
filter (Butterworth, cutoff frequency of 3 kHz, 1st order) and a 
highpass IIR filter (Butterworth, cutoff frequency of 3kHz, 3rd 
order) by means of an automated tool (the Filter Designer App 
in the Signal Processing Toolbox [13])). For an online 
implementation of a filter, a given number of previous samples 
dependent on the filter order and architecture needs to be 
stored for the processing of the incoming samples. In 
Simulink, this task is automatically accomplished by the 
generated code. 

https://github.com/MattiaDif/model-based-spike-detection
https://github.com/MattiaDif/model-based-spike-detection


  

B. Refractory Period 

Computation of the refractory period online, requires a 

counter. Every time a spike is detected as per the logic of the 

algorithm, the refractory period starts counting. If a spike is 

detected at least one refractory period after the previous one, 

a new spike is detected, and the counter is reset to zero. 

C.  Local Maxima Check 

Performing an online detection of a peak in the signal 

necessitates storing a window of the samples at time 𝑡𝑛, 𝑡𝑛−1 

and 𝑡𝑛−2. The peak detection occurs when the sample at 𝑡𝑛−1 

is above (or below for the local minimum) the ones recorded 

before (𝑡𝑛−2) and after (𝑡𝑛). 

D.  Adaptive Threshold 

The adaptive threshold consists of an automatic update of 

the threshold according to the level of noise based on a 

specific metric such as STD, RMS, or MAV. As per [11], the 

MAV has been implemented due to its nature to be less 

conditioned by the spiking activity. To compute an adaptive 

threshold, 𝑁 previous consecutive samples must be stored to 

calculate the MAV for estimating the threshold for the next 

segment of signal. This could be done using a buffer of length 

𝑁 (and different buffer overlaps depending on the frequency 

at which it is considered acceptable to modify the threshold).  

E.  PTSD implementation 

The PTSD algorithm requires two specific parameters 

different from the other algorithms: (i) the DT and (ii) the PLP 

[6]. A buffer keeps in memory the last 𝑋 samples of the 

signals. 𝑋 needs to be comparable with the spike duration and 

it strongly depends on the sampling frequency. The first and 

the last sample of the buffer are read, and the two following 

conditions are checked. If the absolute value of the difference 

between the first and the last sample of the buffer is greater 

than or equal to DT, and the absolute value of the difference 

between the index of the first sample and the index of last 

sample is less than the PLP, a new spike is detected. 

 

F. NEO 

The discrete-time NEO is defined as: 

𝛹[𝑥(𝑛)] =  𝑥2(𝑛) − 𝑥(𝑛 + 1)𝑥(𝑛 − 1) [9]. 

As indicated in the formula, a real-time implementation of 

the operator for a real-time application, would necessitate two 

previous samples to be stored. Indeed, to compute the current 

SNEO sample at time 𝑡𝑛 (corresponding to 𝑥(𝑛 + 1)) the 

square of the signal sample at time 𝑡𝑛−1 and the product 

between the current signal sample 𝑡𝑛 and the sample at time 

𝑡𝑛−2 are required. Note that the square operation for an 

embedded implementation can be demanding and could 

require a nontrivial amount of hardware resources.  

G.  Stationary Wavelet Transform 

The SWT consists of applying two orthogonal filters (low-

pass and high-pass) by a convolution between the signal and 

the wavelet coefficients. For online implementation, a signal 

segment needs to first be stored in a buffer, and then the 

convolution between the stored segment and the coefficients 

can be performed. Afterwards, a new signal segment is saved 

in a buffer and the convolution is performed again. 

V. RESULTS 

This section reports the preliminary results of the 
performance analysis of the single channel algorithms 
designed in Simulink. The results account for all the four 
channels of the simulated tetrode, considering all the three 
noise levels (cf. Figure 2).  

A. Parameter Choice 

To compute the performances, we varied one parameter 
(typically the threshold) of each algorithm, according to the 
ranges reported in Table 1. The refractory period has been set 
to 1ms. The hard threshold and the threshold gain have been 
selected according to the noise levels. Moreover, the length of 
the smoothing windows and the wavelet for the SWTTEO 
algorithm have been chosen consistently with previous 
evidence [8]. 

Table 1: Spike detection parameters. 

Algorithms Threshold MAV Others 

Sample Hard 
Threshold 

-80µV to -40µV 
Step 1µV 

- - 

Local Maxima 
Hard Threshold 

-80µV to -40µV 
Step 1µV 

- - 

Sample Adaptive 
Threshold 

Threshold gain 
from 2 to 7  

Step 0.1 

Buffer 
1s 

- 

Local Maxima 
Adaptive 
Threshold 

Threshold gain 
from 2 to 7  

Step 0.1 

Buffer 
1s 

- 

PTSD 
DT from 20µV 

to 100µV     
Step 1.25µV 

- PLP of 0.7ms 

SNEO 
Threshold gain 

from 2 to 7     
Step 0.1 

Buffer 
1s 

Hamming windows 
of 1ms 

SWTTEO 
Threshold gain 

from 2 to 7     
Step 0.1 

Buffer 
1s 

Hamming windows 
of 1ms, sym5 

wavelet, 2 level of 
decomposition 

 

 

Figure 2. Synthetic data generated with MEArec for all the noise level 

STD. 



  

B. Spike Detection Performance 

Figure 3 reports the ROC curves and the boxplots of the 
area under the curve (AUC) according to the three different 
noise levels. For low noise level (STD 10 µV), the Sample 
Hard Threshold, Local Maxima Hard Threshold and PTSD 
algorithms suffers from their little capability to adapt the 
thresholding according to the signal features of each channel. 
Indeed, each channel of the tetrode is characterized by 
different spike amplitudes depending on the distance between 
the electrode and the neuron, therefore, the adaptive threshold-
based algorithms perform better. For a noise level of 20 µV the 
algorithms behave similarly, with an overall decrease in the 
performance and a general increase in the variability of the 
AUC. For the highest noise level, as expected, the overall 
performances worsen, and the overall variability of the AUC 
is increased. The PTSD shows the worse results. Moreover, 
the SNEO and the SWTTEO performances abruptly decreases. 
Particularly, the loss of performance of the SWTTEO could 
depend on the type of the chosen wavelet and the number of 
the level of decomposition. The energy-based algorithms are 
more affected in case of noise as the high-frequency content of 
the spike blends with the high-frequency of the noise and the 
spikes exhibit lower amplitudes. Overall, our preliminary 
analysis indicates that the hard - and adaptive threshold-based 
algorithms show, on average, a more stable behavior than the 
others and the detection of the peak instead of the first sample 
above/below threshold does not improve the outputs. 

VI. DISCUSSION AND CONCLUSION 

This work represents the first, important step towards the 
adoption of a Model-Based Design approach for 
neuroengineering applications. The use of Simulink allowed 
us to simulate the functioning of a set of online spike detection 
algorithms before embedded/hardware implementation, thus 

providing a lightweight mechanism for its use even by non-
experts. Indeed, Model-Based Design allows the developer to 
focus on the algorithm with a minimal effort on the final 
implementation. Depending on the final platform and the 
required performances, C/C++ or VHDL/Verilog code can be 
automatically generated. Our preliminary results point out the 
capability of the majority of the algorithms to provide a 
suitable spike detection for the different conditions. The 
energy-based operator models are promising and deserve a 
deeper analysis. A further investigation of the algorithm 
behavior for higher level of noise is required. Furthermore, 
neuroscientists and neuroengineers can take advantage of a 
results suite to analyze in order to determine the best algorithm 
for a specific real-time application. 

It is worth to underlie that this project is under active 
development and will be available for the community, 
therefore new features will be introduced over time to expand 
and improve the current capability, such as: (i) new algorithm 
design, (ii) algorithm optimization, and (iii) GUI development. 
We believe this approach will speed up the implementation of 
complex closed-loop architectures with demanding timing 
requirements for an increasing number of recording channels. 
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Figure 3: Performance analysis of the algorithms according to the 

different level of noise of the dataset. The ROC curves and the AUC are 

obtained by the average of 𝐹𝑃𝑟𝑎𝑡𝑒 and 𝑇𝑃𝑟𝑎𝑡𝑒  between the four channels 

of the tetrode. The 75th and 25th percentile of the data are represented by 
the top and the bottom of the boxes respectively. The whiskers range 

from the end of the interquartile to the maximum and minimum 

observation of the sample. The middle line represents the median. 


