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Abstract. This paper addresses a parameter synthesis problem for non-
linear hybrid systems. Considering a set of uncertain parameters and a
safety property, we give an algorithm that returns a partition of the set of
parameters into subsets classified as safe, unsafe, or uncertain, depending
on whether respectively all, none, or some of their behaviors satisfy the
safety property. We make use of sensitivity analysis to compute approx-
imations of reachable sets and an error control mechanism to determine
the size of the partition elements in order to obtain the desired precision.
We apply the technique to Simulink models by combining generated code
with a numerical solver that can compute sensitivities to parameter vari-
ations. We present experimental results on a non-trivial Simulink model
of a quadrotor helicopter.

1 Introduction

A standard problem in model-based analysis and design is to find the ranges
of parameters (including initial states) for which the system behavior will be
acceptable [HWT96,FJK08]. We call this the parameter synthesis problem. One
approach to this problem is to run simulations of the system for a set of parame-
ter values that covers the range of values of interest. This approach is attractive
because of its generality: one can simulate almost any system. It can take a very
large number of simulations to cover the parameter space at a sufficient level of
granularity, however.

Reachability analysis offers an alternative to simulation [ADF+06]. By com-
puting reachable sets rather than simulating single trajectories, it may be pos-
sible to explore the design space more efficiently. Although this is the case for
low-dimensional systems, the ability to perform reachability computations for
higher-dimensional systems remains an elusive goal, even for so-called linear hy-
brid automata [HHWT97,Fre05]. The parameter synthesis problem for nonlinear
and higher-dimensional systems remains intractable using reachability tools.

This paper proposes an approach to the parameter synthesis problem that of-
fers the strength of reachability analysis while using only numerical simulations.



This approach is in the spirit of other work on methods for obtaining reachable
set information from single simulation runs [GP06,DM07,LKCK08]. Most of this
work has focused on using simulations to propagate representations of reachable
sets that are guaranteed to be conservative [GP06,LKCK08]. We use a different
approach that leverages the simplicity of sensitivity analysis to generate approx-
imations to reachable sets very efficiently [DM07]. Speed is achieved with a slight
sacrifice in accuracy–the reachable set approximations are not guaranteed to be
conservative. We are able to estimate the error in the approximations, however,
providing a mechanism for gaining some assurance that the final estimation of
the set of good parameters is reasonable.

The paper is organized as follows. The following section introduces notation
and the basic algorithm for simulating hybrid dynamic systems. Section 3 recalls
the method for generating sensitivity matrices with only a slight increase in com-
putation during the simulation run. Section 4 presents the formulation and solu-
tion of the parameter synthesis problem using sensitivity-based reachability. We
describe an implementation of the approach in Section 5 that solves the param-
eter synthesis problem for hybrid systems modeled in MATLAB Simulink and
illustrate its application to the design of a supervisory safety control algorithm
for a quadrotor helicopter. The concluding section summarizes the contributions
of the paper and identifies directions for future research.

2 Hybrid Model and Simulation

The set Rn is equipped with the infinity norm, noted ‖x‖ = maxi |xi|. It is
extended to n × n matrices as usual. We define the diameter of a compact set
P to be ‖P‖ = sup

(p,p′)∈P2

‖p − p′‖. The distance from x to a set R is d(x,R) =

inf
y∈R

‖x − y‖. The Hausdorff distance between two sets R1 and R2 is

dH(R1,R2) = max( sup
x1∈R1

d(x1,R2), sup
x2∈R2

d(x2,R1)).

Given a matrix S and a set P , SP represents the set {Sp,p ∈ P}. Given two
sets R1 and R2, R1 ⊕R2 is the Minkowski sum of R1 and R2, i.e., R1 ⊕R2 =
{x1 + x2,x1 ∈ R1,x2 ∈ R2}.

2.1 Dynamics

We consider a dynamical system S = (Q, f, e, g) with evolutions described by






ẋ = f(q,x,p), x(0) = x0

q+ = e(q−, λ), q(0) = q0

λ = sign(g(x))
(1)

where

– x ∈ Rn is the continuous state, p is the parameter vector lying in a compact
set P ⊂ Rnp , q ∈ Q is the discrete state,



– λ is a vector in {−1, 0, +1}ng,
– g is the guard function mapping Rn to Rng ,
– sign is the usual sign function extended to vectors, i.e., if λ = sign(g(x)),

then λi = 1 if gi(x) > 0, λi = −1 if gi(x) < 0 and λi = 0 if gi(x) = 0.
– e is the event function which updates the discrete state when a component

of the guard function g changes its sign. At each time t, q+ (respectively q−)
represents the value of q immediatly after t (respectively immediatly before
t). It is assumed that q+ = e(q−, λ) = q− if λi 6= 0 for all i. In words, q+

may differ from q− only when one component of the guard function g is zero.

Let T = R+ be the time set. Given p ∈ P , a trajectory ξp is a function from
T to Rn which satisfies (1), i.e., for all t in T , we have

ξ̇p(t) = f(q(t), ξp(t),p), q(t+) = e(q(t−), λ(t)) and λ(t) = sign(g(ξp(t)))

For convenience, the initial state x0 is included in the parameter vector p.
The dimension ng of P is thus greater than n and we have ξp(0) = x0 =
(x01

, x02
, . . . , x0n

), where for all i ≤ n, x0i
= pi.

In this work, we assume that a trajectory can always be computed by ap-
pending solutions of (1) on successive time intervals of the form [tk, tk+1]. This is
possible if for all i, there is a neighborhood of (tk, ξp(tk)) where (t,x) 7→ f(q,x,p)
is continuously differentiable (C1). In this case, we know by the Cauchy-Lipshitz
theorem that there exists hk > 0 such that a solution of the ẋ = f(q,x,p) can
be uniquely continued on the interval (tk, tk + hk]. Thus tk+1 can be defined as
tk+1 = tk + hk and the process can be repeated indefinitely to form a unique
trajectory on the whole time set T given a parameter vector p.

2.2 Event detection

In the model (1) above, the event function triggered by the guard function makes
it possible to introduce discontinuities in the evolution. The function f can be
discontinuous in a state x where some component of g is zero. Assume that
gi(ξp(τ)) = 0 for some i and τ > tk. It can thus be that

f(q(τ−), t−, ξp(τ−),p) 6= f(q(τ+), t+, ξp(τ+),p)

This means that at time τ , the system switches from one continuous dynamics
to another continuous dynamics, which is called a switching event. In such a
situation, the Cauchy-Lipshtz theorem does not apply in (τ, ξp(τ)) and standard
numerical schemes may have problem to provide an accurate result. A solution is
to integrate the dynamics until the time event τ , set tk+1 = τ and then continue
from tk+1 with the new dynamics. Thus τ needs to be detected as precisely
as possible, which can be done through discontinuity locking and zero-crossing

detection [EKP01]. The idea is to fix (or lock) the value of q to q(tk) in order
to prevent the occurrence of a switching event, and to integrate the equation
ẋ = fk(x,p), where fk(x,p) = f(q(tk),x,p), on an interval [tk, tk + hk[. Then
check whether there is a time t ∈]tk, tk + hk[ such that the sign of g changed,



i.e., sign(g(x(tk))) 6= sign(g(x(t))), in which case, by continuity, it is guaranteed
that g has at least one zero on the interval ]tk, t[. A bisection procedure can be
applied to determine the first time τ when a component of g is zero.

This is summarized in the following algorithm to compute ξp(tk+1) knowing
ξp(tk).

1: Compute ξp solution of ẋ = fk(x,p) on [tk, tk + hk]
2: if ∀t ∈ [tk, tk + hk], sign(g(ξp(t)) = sign(g(ξp(tk)) then

3: Return tk+1 = tk + hk and ξp(tk+1)
4: else

5: Find the minimum time τ > tk such that gi(τ ) = 0 for some i

6: Return tk+1 = τ and ξp(tk+1) = ξp(τ )
7: end if

For the above algorithm to be correct, we make the following assumption: at
the time τ of an event,

〈∇gi(x(τ)), f(q−,x(τ−),p)〉 〈∇gi(x(τ)), f(q+,x(τ+),p)〉 > 0. (2)

Gi : gi(x) = 0

f− f+

∇xgi

ξp(t)

x(τ)

This assumption, illustrated in the figure above, guarantees that when a
transition occurs, the dynamics of the systems leans strictly toward the guard
before the switch and strictly away from it after the transition. Thus we do
not allow sliding, i.e., when a trajectory remains on the transition surface, nor
grazing, i.e., when a trajectory hits the surface tangentially. This assumption
holds for many real physical systems. Condition (2) can often be checked for all
possible states in the model.

3 Sensitivity Analysis

The concept of sensitivity to parameters is a classical topic in the theory of dy-
namical systems. It is concerned with the question of the influence of a parameter
change δp on a trajectory ξp. A first order approximation of this influence can
be obtained by a Taylor expansion of ξp(t) with respect to p. For δp ∈ Rnp , we



have:

ξp+δp(t) = ξp(t) +
∂ξp
∂p

(t) δp + ϕ(t, δp) where ϕ(t, δp) = O
(

‖δp‖2
)

(3)

The second term in the right hand side of (3) is the derivative of the trajectory
with respect to the parameter p. Since p is a vector, this derivative is a matrix
called the sensitivity matrix, denoted as Sp(t) =

∂ξp
∂p

(t). By applying the chain

rule to the time derivative of
∂ξp
∂p

(t) we get

Ṡp(t) =
∂f

∂x
(q, ξp(t),p) Sp(t) +

∂f

∂p
(q, ξp(t),p) (4)

Here ∂f
∂x

(q, ξp(t),p) is the Jacobian matrix of f at the trajectory point at time
t. This equation is thus an affine, time-varying ODE that, in the absence of dis-
continuity, can be solved in parallel with the ODE defining the dynamics (1).

When a trajectory switches from a mode q1 to a mode q2 due to the crossing
of a surface given by gi(x) = 0, the dynamics of the system changes from ẋ =
f1(x,p) , f(q1,x,p) to ẋ = f2(x,p) , f(q2,x,p). It follows that the evolution
of the sensitivity matrix also changes from Ṡp = ∂f1

∂x
Sp+ ∂f1

∂p
to Ṡp = ∂f2

∂x
Sp+ ∂f2

∂p
.

Even though we do not consider resets in our models, i.e., the continuous state
remains unaffected by the switching (x(τ−) = x(τ+)), the sensitivity matrix Sp

can be discontinuous in τ . It can be shown that the jump condition, i.e. the
difference between τ− and τ+ is given by [HP00]

Sp(τ+) − Sp(τ−) =
dτ

dp

(

f2(τ,x
∗,p) − f1(τ,x

∗,p)
)

, (5)

where
dτ

dp
=

〈∇xgi(x
∗), Sp(τ)〉

〈∇xgi(x∗), f1(τ,x∗,p)〉
. (6)

In [HP00], conditions for the computation of sensitivity matrices are given
for hybrid models more general than ours. They include evolutions given by
differential algebraic equations, state resets, etc. Since our technique relies on
the ability to compute numerical simulations and sensitivity matrices, it means
that it can be straigthfowardly extended to handle these systems.

4 Parameter Synthesis Algorithm

In this section, we consider an hybrid system S = (Q, f, e, g), a compact set
of parameters P and a set of so-called “bad” states, B ∈ Rn. Our goal is to
partition P into safe, unsafe and uncertain subsets, defined as follows.

Definition 1 (Parameter Synthesis Problem) – A parameter synthesis prob-
lem is a 4-uple (S ,P ,B, T ) where S is an hybrid system, P a compact set,

B a set and T a non-negative real number;



– A solution of the parameter synthesis problem (S ,P ,B, T ) is a partition of

P into three sets (Psaf,Punc,Pbad) such that: for all p ∈ Pbad, ξp(t) ∈ B
for some 0 ≤ t ≤ T ; for all p ∈ Psaf, ξp(t) /∈ B for all 0 ≤ t ≤ T ; and

Punc = P − Psaf ∪ Pbad.

Solutions to the parameter synthesis problem can be defined in terms of reachable

sets, which we define next.

Definition 2 (Reachable Set) The reachable set induced by a set of parame-

ters P at time t is Rt(P) =
⋃

p∈P ξp(t)

It is clear that (Psaf,Punc,Pbad) is a solution of (S ,P ,B, T ) if and only if
Rt(Psaf) ∩ B = ∅ ∀0 ≤ t ≤ T and Pbad = ∪lPl where for each l, Rt(Pl) ⊂ B for
some 0 ≤ t ≤ T . To characterize the precision of a solution, we use the following
definition:

Definition 3 (δp-precise solution) A solution (Psaf,Punc,Pbad) is said to be

δp-precise either if Punc is empty or if it can be decomposed into a finite number

of sets Punc = S1 ∪ S2 ∪ . . . ∪ Sl such that for all j,

– The diameter of Sj is smaller than δp, i.e., ‖Sj‖ ≤ δp,

– The reachable set induced by Sj intersects with B for some 0 ≤ t ≤ T , i.e.,

Rt(Sj) ∩ B 6= ∅,
– The reachable set induced by Sj is not a subset of B for any 0 ≤ t ≤ T , i.e.,

Rt(Sj) * B.

Intuitively a δp-precise solution covers the boundary between safe and unsafe
parameters with a finite number of sets whose sizes are at most δp. Also, by
this definition, a solution for which the uncertain set is empty is δp-precise for
any δp. In the remainder of this section, we present an algorithm that aims at
computing a δp-precise solution. The method is based on an iterative partition-
ing of the parameter space, the computation of reachable set estimates and their
intersections with the bad set.

4.1 Reachable Set Estimation Using Sensitivity

For some subset S of P , set Rt(S) can be approximated by using sensitivity
analysis. Let p and p′ be two parameter vectors in S and assume that we com-
puted the trajectory ξp and the sensitivity matrix Sp at time t. Then we can

use ξp(t) and Sp(t) to estimate ξp′(t). We denote this estimate by ξ̂p

p′(t). The
idea is to drop higher order terms in the Taylor expansion (3), which gives

ξ̂p

p′(t) = ξp(t) + Sp(t)(p′ − p). (7)

If we extend this estimate to all parameters p′ in S, we get the following estimate
for the reachable set Rt(S):

R̂p

t (S) =
⋃

p′∈S

ξ̂p′(t) = {ξp − Sp(t)p} ⊕ Sp(t)S (8)



Note that this is an affine transformation of the initial set S (see Fig. 1).
As a particular situation, if the dynamics of the system is affine, the estimate is
exact as there are no higher order terms in the Taylor expansion.

S

p

p′

ξp(t)ξp(t)

ξp′(t)ξ̂
p

p′(t)

Sp(t)(p′ − p)

Rt(S)

R̂p

t (S)

Fig. 1. Approximation of the reachable set using one trajectory and the corre-
sponding sensitivity matrix.

When the dynamics is nonlinear, R̂p

t (S) is different from Rt(S). For instance,
we have the following lemma.

Lemma 1. There exists a real number K > 0 such that

dH(R̂p

t (S),Rt(S)) ≤ K ‖S‖2.

Proof. Let y be in R̂p
t (S), py ∈ S be such that y = ξ̂p

py
(t) and x = ξpy

(t) ∈

Rt(S). From (3) we have x − y = ξpy
(t) − ξ̂p

py
(t) = ϕ(t,py − p) where ϕ is

a function such that ϕ(t,py − p) = O
(

‖p− py‖2
)

, meaning that we can find

K > 0 such that ‖y − x‖ = ‖ξpy
(t) − ξ̂p

py
(t)‖ ≤ K‖py − p‖2 ≤ K‖S‖2. Since

this is true for any y in R̂p

t (S), sup
y∈R̂p

t (S) d(y,Rt(S)) ≤ K‖S‖2. Similarly we

can prove that sup
x∈Rt(S) d(x, R̂p

t (S)) ≤ K‖S‖2 which implies the result. ⊓⊔

Thus, the error depends on the diameter of S. In order to improve the estimation,
we can partition S into smaller subsets S1,S2, . . . ,Sl and introduce new param-
eters, p1,p2, . . . ,pl to compute more precise local estimates. Then we need to
be able to estimate the benefit of such a refinement. To do so, we can compare
for each Sj the estimate R̂p

t (Sj) that we get using the “global” center p with

the estimate R̂
pj

t (Sj) that we get when using the “local” center pj . We have the
following result:

Proposition 1. Let Sj be a subset of a parameter set S. Let p ∈ S and pj ∈ Sj.

Then

dH(R̂p
t (Sj), R̂

pj

t (Sj)) ≤ Err(S,Sj) (9)

where Err(S,Sj) = ‖ξpj
(t) − ξ̂p

pj
(t)‖ + ‖Spj

(t) − Sp(t)‖‖Sj‖.



Proof. Let y be in R̂p

t (Sj), py in Sj such that y = ξ̂p

py
(t) and x = ξ̂

pj

py
(t). We

need to compare

y = ξp(t) + Sp(t)(py − p) with x = ξpj
(t) + Spj

(t)(py − pj). (10)

We introduce the quantity ξ̂p

pj
(t) = ξpj

(t) + Spj
(t)(p′

j − pj) and with some
algebraic manipulations of (10), we get

ξ̂p

p
′

j

(t) − ξ̂
pj

p
′

j

(t) = ξpj
(t) − ξ̂p

pj
(t) + (Spj

(t) − Sp(t))(p′
j − pj)

which implies that ‖y − x‖ ≤ Err(S,Sj ). The end of the proof is then similar
to that of Lemma 1. ⊓⊔

As illustrated in Fig. 2, the difference between the global and the local esti-
mate can thus be decomposed into the error in the estimate ξ̂p

pj
(t) of the state

reached at time t using pj and another term involving the difference between the
local and the global sensitivity matrices and the distance from local center. The
quantity Err(S,Sj) can be easily computed knowing the trajectory states ξp(t)
and ξpj

(t) and their corresponding sensitivity matrices and from the diameter
of Sj .

1 Err has the following interesting properties:

– If the dynamics is affine, then Err(S,Sj) = 0. Indeed, in this case, ξ̂p

pj
= ξpj

,
so the first term vanishes and Sp = Spj

so the second term vanishes as well;
– If limit ‖S‖ is 0 then limit Err(S,Sj) is also 0. Indeed, as ‖S‖ decreases, so

does ‖p−pj‖ and thus ‖ξpj
(t)− ξ̂p

pj
(t)‖ and ‖Sj‖ since Sj is a subset of S.

Moreover, Err(S,Sj) = O
(

‖S‖2
)

.

Thus we can compute a reachable set Rt(S) at a given time instant t and
estimate the approximation error. To get an estimate R[0,T ](S) on the interval
[0, T ], one can do the computation for t0 = 0, t1, ... and tN = T and use some
form of interpolation between tk and tk+1. This introduces additional error which
depends on |tk+1 − tk| and the order of the interpolation method used.

4.2 Algorithm

The key ideas of the algorithm presented below are the following:

– use the estimate R̂p

t and its intersection with B to classify sets as safe,
uncertain or unsafe;

– use Err to testify whether R̂p

t is a reliable estimate: if it is more than a
given tolerance Tol > 0 for a set S, we classify S as uncertain;

– iteratively apply a refining operator on uncertain subsets to produce a finer
partitioning from which we deduce more safe or unsafe subsets;

– stop when there are no uncertain subsets left or when all uncertain subsets
are smaller in diameter than δp.

1 Note that the value of Err actually depends not only on S and Sj but also on the
choice of p and pj . We leave it implicit to simplify the notation.



S

Sj

p

pj

ξp

ξpj
ξ̂p

pj

Rt(S)

R̂p

t (S)

R̂p

t (Sj)
R̂

pj

t (Sj)

Fig. 2. “global” and “local” estimate of the reachable set Rt(Sj)

To guarantee that the algorithm always terminates in a finite number of steps,
we partition uncertain sets into a set of subsets that are at least γ times smaller.
We define these γ-Refining partitions as follows.

Definition 1 (γ-Refining partition). A γ-refining partition, where 0 < γ <
1, of a set S is a finite set of sets {S1, S2, . . . ,Sl} such that

S =

l
⋃

j=1

Sj and max
j∈{1,...,l}

‖Sj‖ ≤ γ‖S‖

We assume the existence of a function Refineγ that maps a set to one of his
γ-refining partitions for some 0 < γ < 1 and give the complete algorithm below.

5 Implementation and Experimentations

We implemented Algorithm 1 within the toolbox Breach described in [Don07].
Parameter sets are specified as symmetrical rectangular sets S(p, ǫ) where p and
ǫ are in Rnp and such that S(p, ǫ) = {p′ : p − ǫ ≤ p′ ≤ p + ǫ}. The procedure
uses a simple refinement operator Refine 1

2

such that

Refine 1

2

(S(p, ǫ)) = {S(p1, ǫ1),S(p2, ǫ2), . . . ,S(pl, ǫl)}

with ǫk = ǫ/2 and pk = p + (νk
1

ǫ1
2 , νk

2
ǫ2
2 , . . . , νk

n
ǫn

2 ) where νk
i ∈ {−1, +1} so

that when k ranges over {1, . . . , l} all possible sign combinations are met2. The
toolbox interfaces MATLAB with CVODES [SH05], a numerical solver designed
to solve efficiently and accurately ODEs and sensitivity equations of the form
Eq. (4).

2 The use of alternative refinement operators is a direction for further investigation.



Algorithm 1 Parameter Synthesis Algorithm

procedure ParamSynthesis(P , B, T, δp, Tol)
Psaf = Pbad = ∅, Punc = {P}
repeat

Pick and remove S from Punc

for each Sj ∈ Refineγ(S) do

if Err(S ,Sj) ≤ Tol then ⊲ Reach set estimate is reliable
if R̂q

[0,T ](Sj) ∩ B = ∅ then ⊲ Reach set away from B
Psaf = Psaf ∪ Sj

else if R̂q

[0,T ](Sj) ⊂ B then ⊲ Reach set inside B
Pbad = Pbad ∪ Sj

else

Punc = Punc ∪ {Sj} ⊲ Some intersection with the bad set
end if

else

Punc = Punc ∪ {Sj} ⊲ Reach set estimate not enough precise
end if

end for

until Punc 6= ∅ and maxPj∈Punc
‖Pj‖ ≤ δp

return Psaf, Punc, Pbad

end procedure

5.1 Sensitivity Analysis for Simulink Models

A Simulink block diagram model is a graphical representation of a mathemati-
cal model of an hybrid dynamic system [Mat]. It is composed of interconnected
time-based blocks of the form shown below

State
(x, q or none)

Input Output

where the state contained in the block (if present) can be either discrete or
discontinuous. At each time step, the Simulink engine:

1. Computes each block output;
2. Updates the discrete states;
3. Computes the time derivatives f(x) of continuous states;
4. Updates the continuous states by integrating ẋ = f(x) for one step;
5. Optionally checks for zero-crossing;
6. Updates the time for the next time step.

Thus the simulation scheme of Simulink is similar to the simulation algorithm
presented in Section 2. To apply our algorithm to a Simulink model we need
to extract from it the function f defining the continuous dynamics, the event
function e and the guard function g, and to make them available for Breach to



compute trajectories and sensitivity matrices. This is done using code genera-
tion provided by the Real-Time Workshop Toolbox [Mat]. The generated code
implements routines for each of the above steps. For instance f can be obtained
from step 3, e can be obtained from the discrete states update in step 2 and g is
obtained from step 5. The overall procedure is shown in Fig. 3. A script generates
C routines compatible with CVODES from the code generated by the Real-Time
Workshop. Then f() calls the routines MdlOutputs() and MdlDerivative() for
integration, e() calls MdlUpdate() to update discrete states and g() is used for
zero-crossing detection (which is a CVODES built-in feature). Eq. (6) and (7)
are used to update the sensitivity matrices at switching times.

Simulink

Model

        

void mdlOutputs()

void mdlDerivative()

void mdlUpdate()

   

Trajectories

+ Sensitivities

Initial  states

and parameters MATLAB

Code Generation

(RTW toolbox)

C code

}

CVODES Solver

int f( ... ) {}

Matlab C Mexfile

int e( ... ) {}

int g( ... ) {} +

BREACH

Fig. 3. Implementing sensitivity analysis for Simulink models in Breach.

5.2 Starmac Model with Navigation Supervisor

We consider a simplified model of a quad-rotor helicopter [HHWT07] where only
the altitude z and the axis x are considered. The equations of motions for the
quadrotor illustrated below are given by:

ẍ = −
b

m
ẋ +

1

m
(u1 + u2 + u3 + u4)sin(θ)

z̈ = −
b

m
ż +

1

m
(u1 + u2 + u3 + u4)cos(θ) − g

θ̈ =
L

Iy

(u1 − u3) −
c

L
θ̇

where m = 0.5184, c = 0.15, L = 0.236,
Iy = 0.04774. The state vector is then

x = (ẋ, x, ż, z, θ̇, θ).

L

L

mg

u1

u3

θ

z

x

Given a goal state x∗, a standard linear quadratic regulator (LQR) of the form
u = K (x − x∗) + mg

4 1 (where 1 is the vector (1, 1, 1, 1)) was designed to



drive the system to x∗ from any state x0. While doing so, the Starmac needs to
avoid collisions with obstacles and maintain a pre-specified minimum safe flying
altitude above an unknown terrain. This is monitored using two on-board prox-
imity sensors, one in the horizontal (x) and the other in vertical (z) directions.
Using the sensors and the value of the current state, a supervisor implements
the following navigation strategy: in absence of proximity warnings, use the LQR
control and move towards the target (‘GoToTarget’ mode); if either of the prox-
imity warnings is active, switch to a constant control u = (ū, ū, ū, ū), for some
ū > 0, in order to go up until being safe (‘GoUp’ Mode) then resume to GoTo-
Target mode (see Figure 4).
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Fig. 4. Simulink diagram of the model (top left) and the supervisor (top right)
and a sample (safe) trajectory.

While crashing of the Starmac into an obstacle is certainly undesirable, it
may be desirable for it to be able to hover close to an obstacle. Hence the hori-
zontal proximity warning was made velocity-dependent in the GoToTarget state,
i.e., the more the velocity the farther away the system needs to be from the ob-
stacle. The critical distance is set to be the product ẋ tsafe, for some tsafe > 0.
In GoUp mode, the supervisor checks for a fixed horizontal distance hsafe from
the obstacle. In both GoToTarget and GoUp modes, the vertical proximity from
ground is a fixed desired vertical distance vsafe. This switching of control strate-
gies leads to hybrid dynamics with two discrete states, namely ‘GoToTarget’
and ‘GoUp’. The proximity warning conditions in the two directions serve as the
guards for discrete jumps between the two states.



5.3 Experimental Results

The Starmac dynamics, the LQR control and the supervisor were modeled in
Simulink (Fig. 4). Proximity detection was modeled using relay blocks. The
difference between desired distance from the obstacles and the current distance
from obstacles can be fed as the input to these relays. These input signals to the
relays are in turn extracted from the generated C code and fed to our sensitivity
analysis machinery as the zero-crossing detection function g().

We applied our parameter synthesis to the Starmac and the supervisor for
different sets of parameters and a given terrain. The parameters that can vary
in this model include the initial state variables (x0, z0, θ0, ẋ0, ż0 and θ̇0), the
supervisor parameters (hsafe, vsafe, tsafe, ū), the Starmac characteristics (m, Iy ,
b), etc. We present the results we obtained for a situation where an initial position
was set on one side of a hill (described by a simple sinusoid) and a goal state on
the other side. The varying parameters where chosen to be the initial horizontal
speed ẋ0 and the constant control input ū in GoUp mode, so that if we omit
other parameters with a fixed value, P = {(ẋ0, ū) : 10 ≤ ẋ0 ≤ 20, 1.6 ≤ ū ≤ 2}.
The ground was set to be the bad set, given by B = {z ≤ Terrain(x)} where
Terrain is a sinusoidal function. The results are presented in Figure 5.

The algorithm performed 3642 simulations for a computational time of 55
seconds on a laptop with a Dual Core 1.8GHz processor. Most simulations stem
from the neighborhood of a curve delimiting values of (ẋ0, ū) for which trajec-
tories cannot avoid the ground from values for which the avoidance maneuver
works and the Starmac safely reaches the goal state. The algorithm refined the
parameter set until a precision of δẋ0 = 0.001 and δū = 0.0004. Note that per-
forming simulations from parameters on a complete grid of this resolution would
have required 262,144 simulations, more than 70 times the number of simulations
executed by the sensitivity-based algorithm.

6 Conclusion

This paper presents a parameter synthesis algorithm for nonlinear hybrid sys-
tems based on numerical simulation and sensitivity analysis. The algorithm is
scalable in terms of number of state variables and is implemented in a MAT-
LAB toolbox, Breach, that can handle Simulink models directly. The proposed
approach is illustrated for a six-dimensional nonlinear Simulink model of the
STARMAC quadrotor helicopter with a non-trivial hybrid supervisor.

The primary limitation of the algorithm is that the complexity of the re-
finement procedure is exponential in the number parameters. We are currently
investigating methods for scaling the approach to large numbers of parameters.
We are also extending the prototype implementation, which currently handles
zero crossing detection for relay blocks, to a larger set of Simulink and Stateflow
blocks. Directions for future research include the ability to handle models with
uncertain inputs, i.e., dynamics of the form ẋ = f(q,x(t), u(t),p), and extensions
to stochastic systems.
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G
o
U

p
C
o
n
s
ta

n
t
in

p
u
t

ū
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Fig. 5. Results varying the initial horizontal speed ẋ0 and the GoUp constant
input ū. (a) Parameters used for the simulation. Crosses represent values for
which trajectories hit the ground while circles represent values for which the
goal state is safely reached. (b) Resulting trajectories in the (x, z) plane.
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