
ESE 531 Term Project
Fall 2006

Noise cancellation using
adaptive digital filtering

This project was done towards the partial fulfillment of the ESE 531 course offered in Fall 2006.

Submitted by

Gupta, Abhishek

Jumanov, Baurzhan

Rajhans, Akshay

Noise cancellation using adaptive digital filtering

Introduction:

In theory we often model noise or interference using deterministic models, which make

mathematical treatment of noise possible. However, often in practice, noise can have
complicated mixture of different frequencies and amplitudes. What’s worse is it can even change

from time to time. In such cases, it is difficult to write precise equations and often unnecessary

to model noise. Even if we succeed in writing good enough approximations, it would become very
difficult to build filters that would suppress this noise. With the advent of Digital Signal Processing

algorithms, and availability of fast computing power has made it possible for us to use the digital
treatment of noise cancellation effectively and in a cost effective manner.

In this project we tried to implement adaptive noise cancellation on different signals. We

considered two scenarios- one in which we have access to the original noise creating source and

one in which we don’t. In both cases, the algorithm works fairly well. A few sample observations,
and conclusions are noted below.

The setups:

Setup A: Access to noise source

Figure 1: Block diagram for the first setup: Two sources

In this case, there are two signals that are being received. One has the signal plus noise, while
the other one contains the reference noise. The noise content that is mixed with the signal is a

modified form of this reference noise.

In this scenario, we make use of the fact that the noise getting added to the signal is highly

correlated with the reference noise. One simple possibility that can be thought of as the noise
that actually got recorded was a linear combination of the delayed versions of the noise

reference.

Mic 2 Noise
Source

Mic 1

Some
modified
form

Signal plus noise

Adaptive
Filter w[n]

∑
+

-

Noise reference

Signal plus noise

Feedback

Recovered
Signal

Setup B: No access to noise source

Figure 2: Block diagram for the first setup: Single source

In a scenario similar to the one shown in the figure, we have no access to the reference noise as

before. Here we have to rely on only one input which contains signal mixed with noise.

In this case, we make use of the fact that the signal will be somewhat correlated with the

delayed version of itself because it comes from the same setting, e.g. same speaker if speech
signal, same singer and instruments if music. However the noise, being random in nature would

not be correlated. If the precise amount of time delay is properly chosen, we get good noise

reduction.

The ‘adaptation’ part: LMS / Gradient Descent Algorithm:

In both the above cases, we take an ‘initial guess’ as to what our filter coefficients should be, and
keep on ‘learning’ them as time goes. In order to learn the coefficients, we feed back the error

(i.e. the difference between the signal-plus-noise and the output of the adaptive filter) to our
adaptive filter, and the filter tries its best to minimize it. Since the algorithm tries to make the

coefficients that make the mean squared error the least, it is called Least Mean Squared error

(LMS algorithm).

The algorithm feeds back the rate of change of error, i.e. the error ‘gradient’. In order to find the
least error, we need to approach a minimum, i.e. where gradient will become zero. Since the

algorithm also tries to reduce the gradient all the time, it is also (popularly) known as ‘gradient

descent’ algorithm.

Gradient Descent update rule:

[]w E wη∆ = − ∇
�� ��

. .i e
i

i

E
w

w
η

∂
∆ = −

∂

Here, w is a matrix of coefficients of the digital filter; E is the error (a function of weights w) and

η is the learning rate.

Signal plus noise

Adaptive
Filter

∑
+

-

Signal plus noise

OR

Recovered
Signal

Delay

Feedback

Actual implementation: changes, difficulties and modifications

1. For the first scenario, we initially tried recording signal and noise, and noise reference using

two different microphones, as shown in the diagram. However, due to lack of precise

synchronization of start of recording of the two, and due to the large sampling frequencies of the
recorded files, the two files were becoming intractable.

2. To overcome this problem, or rather to find a way around, we had to revert to a more

implementable method. In the simpler method, we took a noise file from the user, and simulated

a noise-to-be-added by filtering the original noise. This was done by means of taking any filter
coefficients h[n] from the user, and generating the noise-to-be-added by convolving the

reference noise and the filter coefficients. Then we added this ‘synthetic’ noise to the signal,
(again, taken from the user) and generated a sample signal-plus-noise file. Apart from simplicity,

the added advantage of using this method was the tractability. Synthesizing noise this way from
given h[n] coefficients made it possible for us to crosscheck whether our algorithm was going in

the right direction, and tracking these filter coefficients or not.

3. During practical implementation of the LMS algorithm, we needed to feed back 2
k

η ε− ⋅ ⋅ , as

the approximation of the gradient (
k

ε here, is the instantaneous error). The derivation of this

calculation of the gradient has been explained in the book Adaptive Signal Processing by Bernard

Widrow and Samuel D. Stearns, 1985. In practice, we fed back
k

η ε− ⋅ , since changing η will

take care of the constant 2.

4. While generating synthetic noise, we have used the convolution function, which does the job

of flipping and shifting the h[n] values. The adaptive filter, however, tracks just the linear
combination. So filter coefficients that the algorithm converges to are oriented from last

coefficient to the first.

5. We kept the initial guess of w’s to be all zeros and all ones. Since the algorithm learns on its

own, the initial guess is not too important.

Observations:

In order to check the performance of the algorithm, we tried different combinations, i.e. different

learning rates (η ’s) and different h[n] values while generating synthetic noise. A few graphs

depicting these observations are given below.

1. Effect of changing different learning rate on the convergence of the algorithm:

Case I: Considerably low learning rate: η kept at 0.0001

The instantaneous values of signal plus noise, noise and restored signal are plotted as a
function of time.

(Figure on the next page)

 Figure 3: Progress of the algorithm with time for lowη

h[n] for generating noise: [.1,.2,.3,.4,.5,.6,.7,.8,.9,0,1,2,3,4,5,6];

Length of reconstruction filter (L)=16;

η =0.001

Corresponding adaptive filter coefficients ‘w’ that the algorithm generated:

w = [6.0001 5.0001 4.0002 3.0001 2.0000 1.0001 0.0002 0.9002 0.8002 0.7000
 0.6000 0.5001 0.4001 0.3001 0.2000 0.1000]T

Case II: Moderately big learning rate: η kept at 0.1

 Figure 4: Progress of the algorithm with time for mediumη

h[n] for generating noise: [.1,.2,.3,.4,.5,.6,.7,.8,.9,0,1,2,3,4,5,6];
L=16; η =0.1

w = [6.0001 5.0002 4.0004 3.0004 2.0003 1.0003 0.0003 0.9004 0.8005 0.7005 0.6005

0.5005 0.4004 0.3003 0.2002 0.1002]T

Case III: Very high learning rate: η kept at 1.1

Here we can see that the algorithm diverges instead of converging. The reconstructed audio

plays very loud noise.

 Figure 5: Progress of the algorithm with time for very highη

h[n] for generating noise: [.1,.2,.3,.4,.5,.6,.7,.8,.9,0,1,2,3,4,5,6];
L=16; η =1.1

w = [6.0034 5.0038 4.0022 3.0066 2.0047 1.0041 0.0037 0.9026 0.8013

 0.7050 0.6047 0.5056 0.4070 0.3038 0.1996 0.1039]T

The usual .wav magnitudes lie between +/- 1. Note the shoot up in the magnitudes of

reconstructed output.

2. How the algorithm updates the h[n] values as time goes by:

 Figure 6: Tracking of the filter coefficients over the course of time

Here η was kept considerably low (0.005), so as to observe the h[n] parameters being updated.

h[n] for generating noise: [1, 2, 3]; L=16; η =0.005

w = [-0.0001 0.0001 0.0002 0.0000 -0.0002 -0.0002 0.0001 0.0002 -0.0000 -0.0003
-0.0002 -0.0000 0.0001 3.0000 1.9998 0.9998] T

3. Different h[n] combinations as tracked by the algorithm:

(L and η kept constant at 16 and 0.01 respectively)

• h[n] for generating noise: [.1,.2,.3,.4,.5,.6,.7,.8,.9]

w = [0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.9002 0.8002 0.7002 0.6002
0.5002 0.4002 0.3001 0.2001 0.1001] T

• h[n] for generating noise: [.1,.2,.3,.4,.5,.6,.7,.8,.9,0,1,2,3,4,5,6]

w = [6.0001 5.0001 4.0002 3.0001 2.0000 1.0001 0.0002 0.9002 0.8002 0.7000 0.6000
0.5001 0.4001 0.3001 0.2000 0.1000]T

• h[n] for generating noise: [1,2,3]

w = [-0.0001 0.0001 0.0002 0.0000 -0.0002 -0.0002 0.0001 0.0002 -0.0000 -0.0003

-0.0002 -0.0000 0.0001 3.0000 1.9998 0.9998]T

Comments and conclusions:

1. The rate of convergence depends upon the value of the learning rate (η). As the value

of η becomes smaller the rate of convergence becomes slower, but the tracking is more

precise. If η is made bigger, the tracking is not as precise, but the convergence is

faster. This could be compared in figures 3-5.
2. There is an optimal value for η . If we increase η beyond this limit, the algorithm

diverges instead of converging. This can be seen in figure 5.

3. If η is kept close to the optimal value, the coefficients of the adaptive filter track the

coefficients used to synthesize noise. This could be seen from figure 6.
4. As said above, the coefficients tracked by the adaptive filter are flipped as compared to

the h[n] coefficients. This was because we used convolution in case of h[n], and linear

combination in case of w’s.
5. The generation of noise using different h[n] coefficients was just for testing purposes. If

precise synchronization between the recording of the reference noise and signal plus
noise, the algorithm could be directly implemented.

6. In the single source implementation, we tested the algorithm on four old songs, which
were possibly recorded from the old gramophone records or audio cassettes. The

reconstruction is satisfactory. However, the learning rate and the time delay (amount by

which the original file needs to be delayed) need to be tuned precisely. We got best
results for delay=100, length of reconstruction filter 128, and η =0.005.

7. The length of the reconstruction filter and the learning rate values are user

programmable. In real world applications, the length of the reconstruction filter should
be decided by the precision needed.

Reference:
[1]. Widrow B., Stearns D.S. (1985). Adaptive Signal Processing (pp. 99-114; 302-350)

Englewood Cliffs, N.J. Prentice-Hall, c1985

Appendixes:

1. MATLAB code for the two settings:
Setting 1: Two source implementation:
% Two Channel implementation of the LMS algorithm

clear all;close all;

sigfile='bella.wav'; % Read the recorded signal

noisefile='noise.wav'; % Read the recorded noise

[sig_noise,fs_sig,nbits_sig,refnoise]=sig_plus_noise(sigfile,

noisefile); % Generate a synthetic noise from this reference noise,

mix it with signal, and return the mixed file

file_len=length(sig_noise); % Length of the file

L=input('Enter the order of the reconstruction filter: '); % Order

of the filter

e=zeros(file_len,1); % Put place-holder zeros for error vector

w=zeros(L,1); % Put place-holder zeros for weight vector

eta=input('Enter the learning rate for LMS: '); % Gain constant that

regulates the speed and stability of adaptation

for i=L+1:file_len

 e(i)=sig_noise(i)-refnoise(i-L+1:i)'*w; % Calculation of Error

vector

 w=w+2*eta*e(i)*refnoise(i-L+1:i); % Calculation of the Weight

vector

end;

subplot(311);

plot(sig_noise); title('Signal plus noise');

subplot(312);

plot(refnoise); title('Reference noise');

subplot(313);

plot(e); title('Reconstructed output');

echo on;

% The final values of converged w of the filter:

echo off;

w

wavwrite(e,fs_sig,nbits_sig,'restored.wav') % Write the output

signal to a music file

function noiseout = gennoise(noisein,h,fs,nbits)

% This fucntion takes in the reference noise sample, and the h[n] to

% generate a synthesized version of noise. This noise could be

realistic as to what could get added in practice

% compared to just the reference noise.

noiseout=conv(noisein, h); % Generate a synthetic noise

noiseout1=noiseout/max(abs(max(noiseout)),abs(min(noiseout))); %

Normalize the magnitudes

wavwrite(noiseout1,fs,nbits,'addnoise.wav'); % Write the synthetic

noise into a .wav file

function

[sig_noise,fs_sig,nbits_sig,ref_noise]=sig_plus_noise(sigfile,noisef

ile)

% This function takes in the reference signal, the noise to be added

and

% generates a synthesized signal plus noise file.

[ref_sig,fs_sig,nbits_sig]=wavread(sigfile); % Read the pure signal

to be added

[ref_noise,fs_noise,nbits_noise]=wavread(noisefile); % Read the

reference noise

h=input('Enter the h[n] for generating noise: '); % Get the h[n]

from user

add_noise=gennoise(ref_noise,h,fs_noise,nbits_noise); % Generate a

synthetic noise signal to be added

sig_noise_len=min(length(add_noise),length(ref_sig)); % Get the

length of the larger of the two files to be mixed

sig_noise=zeros(sig_noise_len,1); % Put place-holder zeros

sig_noise= (ref_sig(1:sig_noise_len)+ add_noise(1:sig_noise_len)); %

Mix the two files

wavwrite(sig_noise,fs_sig,nbits_sig,'sig_noise.wav'); % Write signal

mixed with noise output to the music file

%%End of two source implementation%%

Setting 2: Single source implementation:

% One channel implementation of the LMS algorithm

clear all;close all;

[sig,fsd,nbitsd]=wavread('johnson.wav'); % Reading music file with a

noise

sig2=sig(1:1000000,1); % Processing only first 1000000 samples to

reduce the time, Input to the primary channel

ylen=length(sig2);

d=150; % Large delay to make noise uncorrelated as possible

sig_del=zeros(ylen,1);

sig_del(d:ylen)=sig2(1:ylen-d+1); % Delayed signal, Input to the

reference channel

e=zeros(ylen,1);w=zeros(ylen,1); w1=zeros(ylen,1); L=151; % Filter

order

eta=0.00005; % Learning rate that regulates the speed and stability

of adaptation

for i=L+1:ylen

 e(i)=sig2(i)-transpose(sig_del(i-L+1:i))*w(i-L+1:i); %

Calculation of Error

 w(i-L+2:i+1)=w(i-L+1:i)+2*eta*e(i)*sig_del(i-L+1:i); %

Calculation of the Weight vector

 w1(i)=transpose(sig_del(i-L+1:i))*w(i-L+1:i); % Output signal of

our code

end;

subplot(411);

plot(sig2); title('Signal');

subplot(412);

plot(sig_del); title('Delayed signal');

subplot(413);

plot(e); title('Error');

subplot(414);

plot(w1); title('Restored signal');

echo on;

%complete!

echo off;

w1=w1/max(abs(max(w1)),abs(min(w1))); % Normalization of output to

prevent data clipping

wavwrite(w1,fsd,nbitsd,'restored_johnson_w4.wav'); % Write the

output signal to the music file

