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Noise cancellation using adaptive digital filtering 
 

Introduction: 
 
In theory we often model noise or interference using deterministic models, which make 

mathematical treatment of noise possible. However, often in practice, noise can have 
complicated mixture of different frequencies and amplitudes. What’s worse is it can even change 

from time to time. In such cases, it is difficult to write precise equations and often unnecessary 

to model noise. Even if we succeed in writing good enough approximations, it would become very 
difficult to build filters that would suppress this noise. With the advent of Digital Signal Processing 

algorithms, and availability of fast computing power has made it possible for us to use the digital 
treatment of noise cancellation effectively and in a cost effective manner.  

 
In this project we tried to implement adaptive noise cancellation on different signals. We 

considered two scenarios- one in which we have access to the original noise creating source and 

one in which we don’t. In both cases, the algorithm works fairly well. A few sample observations, 
and conclusions are noted below.  

 

The setups: 
 

Setup A: Access to noise source 
 

 

 

 
Figure 1: Block diagram for the first setup: Two sources 

 

In this case, there are two signals that are being received. One has the signal plus noise, while 
the other one contains the reference noise. The noise content that is mixed with the signal is a 

modified form of this reference noise. 
 

In this scenario, we make use of the fact that the noise getting added to the signal is highly 

correlated with the reference noise. One simple possibility that can be thought of as the noise 
that actually got recorded was a linear combination of the delayed versions of the noise 

reference.  
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Setup B: No access to noise source 
 

 
 

Figure 2: Block diagram for the first setup: Single source 

 
In a scenario similar to the one shown in the figure, we have no access to the reference noise as 

before. Here we have to rely on only one input which contains signal mixed with noise. 

 
In this case, we make use of the fact that the signal will be somewhat correlated with the 

delayed version of itself because it comes from the same setting, e.g. same speaker if speech 
signal, same singer and instruments if music. However the noise, being random in nature would 

not be correlated. If the precise amount of time delay is properly chosen, we get good noise 

reduction. 
 

 

The ‘adaptation’ part:  LMS / Gradient Descent Algorithm: 
 

In both the above cases, we take an ‘initial guess’ as to what our filter coefficients should be, and 
keep on ‘learning’ them as time goes. In order to learn the coefficients, we feed back the error 

(i.e. the difference between the signal-plus-noise and the output of the adaptive filter) to our 
adaptive filter, and the filter tries its best to minimize it. Since the algorithm tries to make the 

coefficients that make the mean squared error the least, it is called Least Mean Squared error 

(LMS algorithm).  
 

The algorithm feeds back the rate of change of error, i.e. the error ‘gradient’. In order to find the 
least error, we need to approach a minimum, i.e. where gradient will become zero. Since the 

algorithm also tries to reduce the gradient all the time, it is also (popularly) known as ‘gradient 

descent’ algorithm. 
 

Gradient Descent update rule: 
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Here, w is a matrix of coefficients of the digital filter; E is the error (a function of weights w) and 

η  is the learning rate. 
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Actual implementation: changes, difficulties and modifications  
 
1. For the first scenario, we initially tried recording signal and noise, and noise reference using 

two different microphones, as shown in the diagram. However, due to lack of precise 

synchronization of start of recording of the two, and due to the large sampling frequencies of the 
recorded files, the two files were becoming intractable.  

 
2. To overcome this problem, or rather to find a way around, we had to revert to a more 

implementable method. In the simpler method, we took a noise file from the user, and simulated 

a noise-to-be-added by filtering the original noise. This was done by means of taking any filter 
coefficients h[n] from the user, and generating the noise-to-be-added by convolving the 

reference noise and the filter coefficients. Then we added this ‘synthetic’ noise to the signal, 
(again, taken from the user) and generated a sample signal-plus-noise file. Apart from simplicity, 

the added advantage of using this method was the tractability. Synthesizing noise this way from 
given h[n] coefficients made it possible for us to crosscheck whether our algorithm was going in 

the right direction, and tracking these filter coefficients or not. 

 

3. During practical implementation of the LMS algorithm, we needed to feed back 2
k

η ε− ⋅ ⋅ , as 

the approximation of the gradient (
k

ε  here, is the instantaneous error). The derivation of this 

calculation of the gradient has been explained in the book Adaptive Signal Processing by Bernard 

Widrow and Samuel D. Stearns, 1985. In practice, we fed back 
k

η ε− ⋅ , since changing η will 

take care of the constant 2.  
 

4. While generating synthetic noise, we have used the convolution function, which does the job 

of flipping and shifting the h[n] values. The adaptive filter, however, tracks just the linear 
combination. So filter coefficients that the algorithm converges to are oriented from last 

coefficient to the first. 
 

5. We kept the initial guess of w’s to be all zeros and all ones. Since the algorithm learns on its 

own, the initial guess is not too important. 
 

Observations: 
 
In order to check the performance of the algorithm, we tried different combinations, i.e. different 

learning rates (η ’s) and different h[n] values while generating synthetic noise. A few graphs 

depicting these observations are given below. 
 

1. Effect of changing different learning rate on the convergence of the algorithm: 
 

Case I: Considerably low learning rate: η kept at 0.0001 

 

The instantaneous values of signal plus noise, noise and restored signal are plotted as a 
function of time. 

 
 

(Figure on the next page) 

 
 

 



 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 
         Figure 3: Progress of the algorithm with time for lowη  

 
h[n] for generating noise: [.1,.2,.3,.4,.5,.6,.7,.8,.9,0,1,2,3,4,5,6];  

Length of reconstruction filter (L)=16;  

η =0.001 

 
Corresponding adaptive filter coefficients ‘w’ that the algorithm generated: 

w = [6.0001  5.0001  4.0002  3.0001  2.0000  1.0001  0.0002  0.9002  0.8002  0.7000 
        0.6000  0.5001  0.4001  0.3001  0.2000  0.1000]T 

 

Case II: Moderately big learning rate: η  kept at 0.1 

 
         Figure 4: Progress of the algorithm with time for mediumη  

h[n] for generating noise: [.1,.2,.3,.4,.5,.6,.7,.8,.9,0,1,2,3,4,5,6];  
L=16;  η =0.1  

w = [6.0001  5.0002  4.0004  3.0004  2.0003  1.0003  0.0003  0.9004  0.8005  0.7005  0.6005 

0.5005  0.4004  0.3003  0.2002  0.1002]T    



 

Case III: Very high learning rate: η  kept at 1.1 

 
Here we can see that the algorithm diverges instead of converging. The reconstructed audio 

plays very loud noise. 
 

 
         Figure 5: Progress of the algorithm with time for very highη  

 

h[n] for generating noise: [.1,.2,.3,.4,.5,.6,.7,.8,.9,0,1,2,3,4,5,6];  
L=16; η =1.1 

w = [6.0034  5.0038  4.0022  3.0066  2.0047  1.0041  0.0037  0.9026  0.8013 

    0.7050  0.6047  0.5056  0.4070  0.3038  0.1996  0.1039]T 

 
The usual .wav magnitudes lie between +/- 1. Note the shoot up in the magnitudes of 

reconstructed output. 
 



2. How the algorithm updates the h[n] values as time goes by: 

 
         Figure 6: Tracking of the filter coefficients over the course of time 

 

Here η  was kept considerably low (0.005), so as to observe the h[n] parameters being updated. 

 

h[n] for generating noise: [1, 2, 3]; L=16; η =0.005  

w = [-0.0001  0.0001  0.0002  0.0000  -0.0002  -0.0002  0.0001  0.0002  -0.0000  -0.0003   
-0.0002  -0.0000  0.0001  3.0000  1.9998  0.9998] T 

 

 
3. Different h[n] combinations as tracked by the algorithm:  

(L and η  kept constant at 16 and 0.01 respectively) 

 
 

• h[n] for generating noise: [.1,.2,.3,.4,.5,.6,.7,.8,.9] 

w = [0.0001  0.0001  0.0002  0.0002  0.0002  0.0002  0.0002  0.9002  0.8002  0.7002  0.6002    
0.5002  0.4002  0.3001  0.2001  0.1001] T 

 

• h[n] for generating noise: [.1,.2,.3,.4,.5,.6,.7,.8,.9,0,1,2,3,4,5,6] 

w = [6.0001  5.0001  4.0002  3.0001  2.0000  1.0001  0.0002  0.9002  0.8002  0.7000  0.6000     
0.5001  0.4001  0.3001  0.2000  0.1000]T 
 

• h[n] for generating noise: [1,2,3] 

w = [-0.0001  0.0001  0.0002  0.0000  -0.0002  -0.0002  0.0001  0.0002  -0.0000  -0.0003   

-0.0002  -0.0000  0.0001  3.0000  1.9998  0.9998]T  

  
 

 
 
 



Comments and conclusions: 
 

1. The rate of convergence depends upon the value of the learning rate (η ). As the value 

of η  becomes smaller the rate of convergence becomes slower, but the tracking is more 

precise. If η  is made bigger, the tracking is not as precise, but the convergence is 

faster. This could be compared in figures 3-5. 
2. There is an optimal value for η . If we increase η  beyond this limit, the algorithm 

diverges instead of converging. This can be seen in figure 5. 

3. If η  is kept close to the optimal value, the coefficients of the adaptive filter track the 

coefficients used to synthesize noise. This could be seen from figure 6. 
4. As said above, the coefficients tracked by the adaptive filter are flipped as compared to 

the h[n] coefficients. This was because we used convolution in case of h[n], and linear 

combination in case of w’s. 
5. The generation of noise using different h[n] coefficients was just for testing purposes. If 

precise synchronization between the recording of the reference noise and signal plus 
noise, the algorithm could be directly implemented.  

6. In the single source implementation, we tested the algorithm on four old songs, which 
were possibly recorded from the old gramophone records or audio cassettes. The 

reconstruction is satisfactory. However, the learning rate and the time delay (amount by 

which the original file needs to be delayed) need to be tuned precisely. We got best 
results for delay=100, length of reconstruction filter 128, and η =0.005. 

7. The length of the reconstruction filter and the learning rate values are user 

programmable. In real world applications, the length of the reconstruction filter should 
be decided by the precision needed.   
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Appendixes: 

1. MATLAB code for the two settings: 
Setting 1: Two source implementation: 
% Two Channel implementation of the LMS algorithm 

clear all;close all; 

 

sigfile='bella.wav'; % Read the recorded signal 

noisefile='noise.wav'; % Read the recorded noise 

 

[sig_noise,fs_sig,nbits_sig,refnoise]=sig_plus_noise(sigfile, 

noisefile); % Generate a synthetic noise from this reference noise, 

mix it with signal, and return the mixed file 

file_len=length(sig_noise); % Length of the file 

 

L=input('Enter the order of the reconstruction filter: '); % Order 

of the filter 

 

e=zeros(file_len,1); % Put place-holder zeros for error vector 

w=zeros(L,1); % Put place-holder zeros for weight vector 

 



eta=input('Enter the learning rate for LMS: '); % Gain constant that 

regulates the speed and stability of adaptation 

 

for i=L+1:file_len  

   e(i)=sig_noise(i)-refnoise(i-L+1:i)'*w; % Calculation of Error 

vector 

   w=w+2*eta*e(i)*refnoise(i-L+1:i); % Calculation of the Weight 

vector 

end; 

subplot(311); 

plot(sig_noise); title('Signal plus noise');  

subplot(312); 

plot(refnoise); title('Reference noise'); 

subplot(313); 

plot(e); title('Reconstructed output'); 

 

echo on; 

% The final values of converged w of the filter: 

echo off; 

w 

 

wavwrite(e,fs_sig,nbits_sig,'restored.wav') % Write the output 

signal to a music file 

 

 

function noiseout = gennoise(noisein,h,fs,nbits) 

 

% This fucntion takes in the reference noise sample, and the h[n] to 

% generate a synthesized version of noise. This noise could be 

realistic as to what could get added in practice 

% compared to just the reference noise. 

 

noiseout=conv(noisein, h); % Generate a synthetic noise 

noiseout1=noiseout/max(abs(max(noiseout)),abs(min(noiseout))); % 

Normalize the magnitudes 

wavwrite(noiseout1,fs,nbits,'addnoise.wav'); % Write the synthetic 

noise into a .wav file 

 

 

function 

[sig_noise,fs_sig,nbits_sig,ref_noise]=sig_plus_noise(sigfile,noisef

ile) 

 

% This function takes in the reference signal, the noise to be added 

and 

% generates a synthesized signal plus noise file. 

 

[ref_sig,fs_sig,nbits_sig]=wavread(sigfile); % Read the pure signal 

to be added 

[ref_noise,fs_noise,nbits_noise]=wavread(noisefile); % Read the 

reference noise 

 

h=input('Enter the h[n] for generating noise: '); % Get the h[n] 

from user 

add_noise=gennoise(ref_noise,h,fs_noise,nbits_noise); % Generate a 

synthetic noise signal to be added 



 

sig_noise_len=min(length(add_noise),length(ref_sig)); % Get the 

length of the larger of the two files to be mixed 

 

sig_noise=zeros(sig_noise_len,1); % Put place-holder zeros 

 

sig_noise= (ref_sig(1:sig_noise_len)+ add_noise(1:sig_noise_len)); % 

Mix the two files 

 

wavwrite(sig_noise,fs_sig,nbits_sig,'sig_noise.wav'); % Write signal 

mixed with noise output to the music file 

%%End of two source implementation%% 

 

Setting 2: Single source implementation: 
 

% One channel implementation of the LMS algorithm 

clear all;close all; 

[sig,fsd,nbitsd]=wavread('johnson.wav'); % Reading music file with a 

noise  

sig2=sig(1:1000000,1); % Processing only first 1000000 samples to 

reduce the time, Input to the primary channel 

ylen=length(sig2); 

d=150; % Large delay to make noise uncorrelated as possible 

sig_del=zeros(ylen,1);  

sig_del(d:ylen)=sig2(1:ylen-d+1); % Delayed signal, Input to the 

reference channel 

e=zeros(ylen,1);w=zeros(ylen,1); w1=zeros(ylen,1); L=151; % Filter 

order 

eta=0.00005; % Learning rate that regulates the speed and stability 

of adaptation  

for i=L+1:ylen  

   e(i)=sig2(i)-transpose(sig_del(i-L+1:i))*w(i-L+1:i); % 

Calculation of Error 

   w(i-L+2:i+1)=w(i-L+1:i)+2*eta*e(i)*sig_del(i-L+1:i); % 

Calculation of the Weight vector 

   w1(i)=transpose(sig_del(i-L+1:i))*w(i-L+1:i); % Output signal of 

our code 

end; 

subplot(411); 

plot(sig2); title('Signal');  

subplot(412); 

plot(sig_del); title('Delayed signal'); 

subplot(413); 

plot(e); title('Error'); 

subplot(414); 

plot(w1); title('Restored signal'); 

echo on; 

%complete! 

echo off; 

w1=w1/max(abs(max(w1)),abs(min(w1))); % Normalization of output to 

prevent data clipping 

wavwrite(w1,fsd,nbitsd,'restored_johnson_w4.wav'); % Write the 

output signal to the music file 


