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Abstract— In recent years, a number of trajectory opti-
mization algorithms have been proposed and established for
motion planning of robot manipulators in complex, but static,
predefined, environments. To enable reactive motion planning
under uncertain conditions caused, for example, by moving
obstacles, this paper proposes a formulation of the trajectory
optimization problem that is tailored for model predictive
control. The proposed algorithmic solution leverages off-the-
shelf computational tools for nonlinear model predictive control,
optimization, and collision checking. In addition, a motion
planning paradigm is introduced to allow for online collision-
free motion following a joystick command. The approach
is validated in the context of an industrial pick-and-place
application using MATLAB® and a Kinova® robot manipulator,
both in simulation and experimentally.

I. INTRODUCTION

Over the past decades, robotic manipulators, commonly re-
ferred to as robot arms, are being employed in industrial en-
vironments to perform highly repetitive, mundane maneuvers
such as picking, placing, and sorting in static, well-known
environments. In most cases, industrial robot manipulators
use simple, interpolation-based planning algorithms to plan
end-effector motions from point A to point B.

For flexible manufacturing, robot manipulators are re-
quired to work in cluttered, ever changing environments
while collaborating with and avoiding collisions with human
workers and other robotic entities. In addition, new ware-
house automation paradigms combine robotic manipulators
with mobile robots for expanding capabilities giving rise to
situations where the workspace of the robot arm cannot be
statically defined [1], [2].

To accommodate contemporary needs for dynamic col-
lision avoidance, new algorithmic solutions have emerged
but have yet to be widely adopted in professional settings.
Sampling-based planners have become the key in this effort,
mostly because of their versatility, speed, and generalizabil-
ity. With the introduction of the Robot Operating System
(ROS) [3], motion planning libraries based on sampling-
based techniques, such as the Open Motion Planning Library
(OMPL) [4], became readily available through packages such
as MoveIt! [5]. This development has been conducive to
the adoption of sampling-based planning methodologies in
industrial settings, albeit with a long way to go.

On the other side of sampling-based path planning meth-
ods stand trajectory optimization approaches (model-free or
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Fig. 1. The experimental setup where a Kinova® Gen3 robotic
arm performs a pick-and-place task in a warehouse environment.
The Robotics System ToolboxTM [12] Support Package for Manip-
ulators is used to interface with and control the robot arm using
MATLAB® [9]. Stateflow® [13] for MATLAB® is used to schedule
the pick-and-place tasks. The corresponding simulation environment is
shown in Fig. 6. A video of the experiment results is provided in
https://github.com/stacymav/nonlinearmpc-content..

model-based). Recently, algorithms such as CHOMP [6],
TrajOpt [7], and STOMP [8] have revived interest in op-
timization techniques for motion planning. In addition, de-
ployment tools (e.g., code generation in MATLAB® [9]) have
allowed fast implementations of optimization algorithms.

Although a number of trajectory optimization algorithms
for robotic systems (including robot arms) have been pro-
posed, as mentioned above, model predictive control of robot
manipulators for real-time optimization in dynamically-
varying environments has not received measurable attention
from the research and industry community. Model predictive
control (MPC) in the context of trajectory optimization refers
to optimizing a trajectory every ts seconds using the current,
updated knowledge of the robot and the world as input
(e.g., current robot state and current obstacles state) [10].
Only a subset of the inputs of the calculated trajectory is
applied to the system and the rest are discarded. Recently,
model-based reinforcement learning has rekindled the inter-
est on model predictive control approaches because it allows
for constant re-planning as the model is refined based on
new data [11].

The algorithm described in this paper proposes a problem
formulation, that is, definition of the cost function and non-
linear constraints, that makes trajectory optimization suitable
to be employed in MPC paradigms. In particular, compared
to single trajectory optimization for full motion planning,

https://github.com/stacymav/nonlinearmpc-content


trajectory optimization during a single MPC step does not
require that the (temporally) terminal state of the trajectory
be constrained to match the target state. Instead, the target
state is encoded in the cost function, which promotes shorter
time horizons for faster calculations. In addition, although
trajectory optimization algorithms do not require the use
of models (dynamic or kinematic), the proposed algorithm
generates trajectories that satisfy a double integrator model as
a proxy for constraints in curvature and displacement lengths
from one time step to the next. More sophisticated models
can also be used. In the proposed solution, MPC is used
in supervisory control mode in order to generate desired
position, velocity, and acceleration joint state that can be
tracked using low-level controllers (e.g., Proportional Inte-
gral Derivative, PID, controllers). As a result, pre-definition
of a reference trajectory is not required for planning. Only
the final target pose is provided to the algorithm that outputs
reference collision-free joint-space waypoints to track in real
time.

The algorithm is validated in simulation in four different
use cases: a) tracking static pose target with static obsta-
cles, b) tracking static pose target with dynamic obstacles,
c) tracking moving pose target with static obstacles, and
d) tracking moving pose target with dynamic obstacles.
The algorithm is tested in an experimental pick-and-place
warehouse scenario in which a Kinova® arm is used to
put objects on shelves. The examples aim to showcase the
versatility of the approach and its applicability to a range
of motion planning scenarios that are common in industrial
settings.

This paper describes step by step how to formulate and
solve a motion planning problem for manipulators in dy-
namic environments using readily-available software tools
for nonlinear MPC, global optimization, and collision check-
ing between mesh geometries. The outline of the paper is as
follows: Section II aims to summarize related work in the
field of trajectory optimization and MPC for robot manipu-
lators. The theoretical background is provided in Section III,
and the proposed problem formulation is described in detail
in Section IV. Simulation and experiment results are shown
in Section V, followed by a discussion on user choices for
formulating the trajectory optimization problem for MPC
algorithms in Section VI.

II. RELATED WORK

Trajectory optimization has been commonly employed
to generate energy-efficient trajectories in settings where
energy consumption has a high impact on performance, such
as for industrial robots [14]. Time-optimal trajectories are
also of interest when the robot’s workspace and mobility is
expanded, as in the case of mobile manipulators [2].

Lately, there has been significant focus on establishing
trajectory optimization techniques for collision-free planning
in cluttered environments with static obstacles. CHOMP [6],
STOMP [8], and TrajOpt [7] are all commonly-used al-
gorithmic trajectory optimization solutions. TrajOpt handles

collisions by encoding them as constraints in the optimiza-
tion problem definition and relies on the computation of
signed distances using convex-convex collision checking (an
approach that is adapted in this paper, as well). Instead,
both CHOMP and STOMP encode the collision avoidance
objective in the cost function and employ the Euclidean
distance transform that is precomputed on a voxel grid.
All three algorithms assume that the goal of the planned
trajectory is fixed and that the obstacles are static. They are
originally designed to be model-free with the potential to
add model information if required, such as in the case of
non-holonomic robots. The problem of non-differentiability
of collision avoidance constraints has been addressed in
other work [15]. Several approaches for collision-free tra-
jectory optimization of robotic manipulators with a focus
on industrial applications have been proposed [16] [17]. The
trajectory optimization solutions mentioned in this paragraph
are not particularly suited for dynamic trajectory generation
via model predictive control without modifications because
the trajectory goal is encoded as terminal constraint in the
problem definition.

For a robot manipulator to efficiently avoid dynamic
obstacles, most available techniques propose reactive online
modification of an offline trajectory every time a future
collision is expected [18]. The generation of optimal robot
manipulator trajectories for dynamic and/or reactive obstacle
avoidance via model predictive control has not been stud-
ied as extensively. Most proposed methods are specifically
tailored to a setting of interest, such as a manufacturing
process [19] and a space operation [20], or to a robot of
interest, such as the KUKA YouBot [21]. In work that is most
closely related to the solution presented in this paper [19],
the trajectory goal is also encoded in the cost function but
as an error on the robot joint positions instead of a direct
error on the target pose. See Section VI for a discussion on
the cost function selection and the associated implications.

III. BACKGROUND

We consider a robot manipulator with n revolute joints
q = [q1, ..., qn]. For this study, the Kinova® Gen3 robotic
arm with n = 7 joints is considered (Fig. 1). The 6-DoF
(Degrees of Freedom) end-effector pose at configuration q
is given as P (q) and is calculated using the forward kine-
matic equations for open-chain manipulators. Here P (q) =
[px, py, pz, φ, θ, ψ], where px, py, pz denote the Cartesian
coordinates on the x, y, and z axis, and φ, θ, ψ are the X-
Y -Z Euler angles.

A. Model
The state of the robot manipulator is given by a concate-

nation of the robot joint positions and velocities such that
x = [q, q̇] ∈ X ⊆ R2n. We use a double integrator to model
the motion of each robot joint as follows:

ẋ =

(
0n×n 1n×n
0n×n 0n×n

)
x+

(
0n×n
1n×n

)
u, (1)

where the inputs u ∈ Rn are joint accelerations q̈. Modeling
the joints as double integrators guarantees smooth motions



while maintaining model linearity. It is certainly an option to
include the full nonlinear robot dynamics, however since we
are only using model predictive control in supervisory mode,
this will affect the computational efficiency of the algorithm
without significant impact on the resulting robot motion.
Admittedly, including the robot dynamics would alleviate the
need for a low-level controller to track resulting joint state
(see Algorithm 1).

B. Trajectory Optimization

A model-based trajectory optimization problem
P(J, t0, x0, T ) is formulated as follows:

P(J, t0, x0, T ) :
Compute uopt(t)|t0+T

t0 , xopt(t)|t0+T
t0

that minimize cost J(x(t), u(t))|t0+T
t0

subject to
system of equations ẋ = f(x, u) with x(t0) = x0,

and constraints g(x(t)) ≤ 0 ∀t ∈ [t0, t0 + T ],

(2)

where t0 is the current time, T is the time horizon, x(t), u(t)
are the system state and inputs, respectively, at time t, and
J(x(t), u(t))|t0+T

t0 is the cost function defined over the state
and input trajectories.

This continuous-time problem can be formulated as a
discrete optimization problem. In this case, equality con-
straints are used to encode the (discretized) system equa-
tions. Accordingly, inequality constraints encode state limits
and/or restrictions about the environment (e.g., obstacles
to avoid). Similar to TrajOpt [7], to solve a single trajec-
tory optimization problem P , the well-known Sequential
Quadratic Programming (SQP) method is employed which
solves a Quadratic Programming (QP) subproblem at each
iteration [22]. The function fmincon from Optimization
ToolboxTM [23] available in MATLAB® [9] offers a generic
implementation of this method and is used throughout.

C. Model Predictive Control

Model Predictive Control (as defined in this paper) solves
a trajectory optimization problem P every ts seconds with
updated initial state and inequality constraints. The function
nlmpc from Model Predictive Control ToolboxTM [24] avail-
able in MATLAB® [9] is used to perform nonlinear MPC.

IV. PROBLEM FORMULATION

This section introduces a formulation of the trajectory op-
timization problem P in (2) that can be employed for model
predictive control of robot manipulators to plan collision-free
paths. This formulation includes the cost function definition,
the constraints, and their respective Jacobians.

A. Cost Function Definition

The objective in this work is to plan a trajectory from
initial end-effector pose PA to target end-effector pose PB

without intersecting with obstacles in the environment while
minimizing effort. As opposed to the majority of trajec-
tory optimization solutions, the model predictive control

Algorithm 1: Model Predictive Control Algorithm
Initialize: current time t0, time horizon T , time step ts,
current state x0 = [q0, q̇0], current pose target P (t0)

B ,
current obstacle constraints g(t0), cost weight matrices
Q,R, S1, S2;

while Termination Condition do
Solve P(J, t0, x0, T ) to compute xopt(t)|t0+T

t0 ;
xref ←xopt(t0 + ts);
Use low-level controller to track xref ;
t0 ← t0 + ts;
x0 ← get current state() ;
if dynamic obstacles then

Obtain obstacles location at t0 ;
Update obstacles Oj in constraint g(t0) in (4) ;

end
if moving pose target then

P
(t0)
B ← update(PB);

Update cost function J in (3);
end

end

paradigm allows including the target pose in the cost function
instead of setting it as equality constraint. In particular, the
cost is formulated on the task space instead of the joint
space, to include the 6-DoF end-effector pose error directly
by applying nonlinear forward kinematics on the robot state.
Specifically, the cost function takes the following form:

J =

∫ tf

t0

L(x(t), u(t))dt+K(tf , x(tf ))

with running cost

L = (PB − P (qt))TQ(PB − P (qt)) + u(t)TRu(t)

and terminal cost

K = (PB − P (qtf ))TS1(PB − P (qtf )) + q̇TtfS2q̇tf

(3)

where qt and qtf are the robot joint configurations at
times t and tf , respectively, tf is the final time such that
tf = t0+T with T being the time horizon of the optimization
problem, that is, how far in the future the algorithm can
see. The weight matrices Q,S1 ∈ R6×6 are symmetric,
positive semi-definite and define the importance of each of
the 6 target pose dimensions (translation and rotation) based
on the requirements of the use case. The weight matrix
S2 ∈ Rn×n determines the weight on the terminal joint
velocities, while the matrix R ∈ Rn×n regulates the cost on
joint accelerations. See the results in Section V how different
values of the weight matrices can be used for different use
cases. For a discussion on other choices of cost functions as
well as their advantages and disadvantages, see Section VI-
A.

B. Constraints

Inequality constraints in (2) are employed for two purposes
in the proposed problem formulation: i) to impose bounds on
state and inputs, and ii) to avoid collision with obstacles. The



former are linear constraints, while the latter are nonlinear
constraints, and they are both described in more detail in the
following subsections.

1) Linear inequality constraints: Upper and lower bounds
are imposed on the robot state x (joint positions and
velocities) and inputs u (joint accelerations) as inequality
constraints to problem P , such that xmin < x < xmax and
umin < u < umax. Imposing constraints on input accel-
eration is an indirect way to generate curvature-constrained
trajectories.

2) Nonlinear inequality constraints: Trajectories that
avoid collisions with the world are planned by specifying
appropriate inequality constraints. The world is represented
as a set of obstacles, with each obstacle being a distinct
convex mesh. Meshes can be primitives (box, cylinder, or
sphere) or customized imported convex meshes.

To generate collision-free trajectories, a method from
related work [7] is adopted to add discrete optimization
constraints on the minimum distance between the robot links
and the convex representation of obstacles using convex-
convex collision checking. Inequality constraints require that
every robot body is at a safe distance from every obstacle
(mesh) in the scene by setting the following constraint in the
optimization problem (2):

gi,j(x(t)) = −(dist(Li,Oj)− SD)|t
for i = 1, ..., k and j = 1, ...,m

(4)

where k and m are the total number of robot links and convex
obstacles respectively, Li and Oj are the ith robot link and
jth obstacle, respectively, and SD is the user-defined safety
distance required between meshes. Collision checking and
minimum distance calculation on convex meshes are applied
to calculate this constraint. An implementation of such an
approach is available in Robotics System ToolboxTM [12] in
MATLAB® [9]. Detailing the collision checking methodol-
ogy is out of scope for this paper.

Since handling of collisions is not the focus of this paper,
this algorithm implementation does not consider continuous-
time collision checking or any other additional collision
penalties. These can be added based on preference with no
significant change to the concept of the presented algorithm.
For additional details, the reader is referred to [7].

C. Jacobian functions

To speed up each iteration run of the optimization al-
gorithm, the Jacobians of the nonlinear cost function and
inequality constraint function are derived.

The Jacobians of the nonlinear cost function in (3) are the
following:

∂J

∂q

∣∣∣
t
= −(PB − P (qt))TQJ ee

a (qt)

∂J

∂q

∣∣∣
tf

= −(PB − P (qtf ))TS1J ee
a (qtf )

∂J

∂q̇

∣∣∣
t
= 0,

∂J

∂q̇

∣∣∣
tf

= q̇TtfS2,
∂J

∂u

∣∣∣
t
= u(t)TR

(5)

Fig. 2. Two examples, (a) and (b), of the Kinova® robot arm tracking a
static target pose shown as a red asterisk while avoiding the orange obstacles.
Each open-loop trajectory is shown with different color. The terminal weight
matrix S1 in (3) is defined such that the final arm rotation in the yaw
direction does not matter. This use case is common when the robot arm
is used for inspection purposes. Note that the open-loop trajectories are
computed in joint space but only the corresponding task-space trajectories
are shown for clarity.

where J ee
a (·) is the analytic Jacobian matrix of the robot

calculated at the end effector.
The Jacobians of the nonlinear inequality constraint func-

tion in (4) are calculated as

∂gi,j
∂q

∣∣∣
t
= ~nTi,j J Li(qt)

∂gi,j
∂q̇

∣∣∣
t
= 0,

∂gi,j
∂u̇

∣∣∣
t
= 0

(6)

where J Li(qt) are the last 3 rows of the geometric robot
Jacobian matrix calculated at the point on the robot link Li

that is closest to obstacle Oj . In addition, ~nTi,j is the 3 × 1
normalized vector in the direction of the smallest translation
that puts robot link Li and obstacle Oj in contact. For more
information on the derivation, kindly refer to [7].

D. Final algorithm

The complete MPC steps are given in Algorithm 1. The
Termination Condition is selected according to the use case,
e.g., whether the desired target is static or moving. More
information about different choices of termination conditions
is provided in the Results section that follows.

V. RESULTS

A number of common industrial use cases were selected
to test the approach in simulation and experiment. All
the subsequent examples assume the existence of sufficient
infrastructure for detecting obstacles in real time at a rate that
is at a minimum equal to the MPC sampling rate (e.g., related
work [19]). The examples were simulated on a 1.9 GHz
Intel Core i7 personal laptop running Windows with 16 GB
memory. The algorithm was implemented in MATLAB® [9].
Subsequently, MATLAB CoderTM [25] was used to generate
C code and speed up the algorithm execution. All the
simulations thereafter were run in MATLAB.



Fig. 3. An example of the Kinova® robot arm tracking a static final target pose while avoiding a cylindrical obstacle that is moving towards the robot
base. The final target pose (red asterisk) is the same as in the examples in Fig. 2. The blue asterisk shows the intermediate target pose at each time step
that is computed according to (7). The motion of the obstacle is not known a priori, only its current location is communicated to the robot at each time
step. Each open-loop trajectory is shown with different color. Note that the open-loop trajectories are computed in joint space but only the corresponding
task-space trajectories are shown for clarity.

Fig. 4. An example of the Kinova® robot arm following a joystick command to “jog” towards the positive y task-space direction by tracking a moving
target pose shown as a red asterisk. The moving target pose at each time step is computed according to (7). Collision with a set of static obstacles (human
arm modelled as a set of ellipsoids) is avoided. Compared to the example in Fig. 3, the final target pose is not fixed but rather changes according to the
obstacles the robot must avoid. Each open-loop trajectory is shown with different color. Note that the open-loop trajectories are computed in joint space
but only the corresponding task-space trajectories are shown for clarity.

Fig. 5. An example of the Kinova® robot arm following a joystick command to “jog” towards the positive y task-space direction by tracking a moving
target pose shown as a red asterisk. The moving target pose at each time step is computed according to (7). Collision with a set of moving obstacles
(human arm modelled as a set of ellipsoids) is avoided. Each open-loop trajectory is shown with different color. Note that the open-loop trajectories are
computed in joint space but only the corresponding task-space trajectories are shown for clarity.

In all the simulation examples, the following param-
eters have been used unless otherwise noted: time step
ts = 0.4s, time horizon T = 1.6s, weight matrices Q =
diag([0.1, 0.1, 0.1, 0, 0, 0]), S1 = diag([10, 10, 10, 1, 1, 1]),
S2 = diag([0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]), and
R = diag([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]). Numerical opti-
mization of open-loop problem (2) using SQP terminates
after a maximum of 5 iterations (unless convergence has been
reached at fewer iterations) to promote speed of algorithm
execution.

A. Static target

The robot is instructed to reach a static target pose PB to
complete a high-level task (e.g., pick or place an object). The
motion is complete when the static target is reached within a
desired tolerance. The Termination Condition in Algorithm
1 is set to diff [P

(t0)
B −P (q(t0))] < ε where ε is a vector of

tolerances, that is, ε ∈ R6, and diff a function that computes
the difference between two poses by appropriately handling

angle wrapping.

1) Static obstacles: The robot is instructed to reach a
target pose PB without enforcing a specific yaw angle at
the end effector. This use case is applicable in scenarios
where the robot is used for inspection purposes with an
onboard camera, and is achieved by setting the weight matrix
S1 = diag([10, 10, 10, 1, 1, 0]). Fig. 2 shows the evolution
of the resulting closed-loop trajectory as well as the inter-
mediate open-loop trajectories. Notice how the intermediate
trajectories do not reach the final target but only serve to
drive the robot towards it. This will be useful in the next use
case where the obstacles are moving.

2) Dynamic obstacles: When the robot manipulator is
known to operate in an environment with dynamic obstacles,
the target pose P

(ti)
B at each time step ti is set to an

intermediate pose in the direction of the final target pose
PB , till the robot is sufficiently close to the final target.



Fig. 6. The Kinova® robot arm is controlled to pick up three objects and place them on the shelves according to their color (yellow to middle shelf, and
green to top shelf), while avoiding obstacles in the scene. Each open-loop trajectory is shown with a different color. Blue dots indicate the closed-loop
trajectory points that the robot actually visited. Note that the open-loop trajectories are computed in joint space but only the corresponding task-space
trajectories are shown for clarity.

Specifically:

P
(ti)
B = P

(ti)
A + speed · targetDirection · ts (7)

where targetDirection = diff(P (i)
A , PB) with P (i)

A the end
effector pose at time step ti and diff a function that computes
the difference between two poses by taking angle wrapping
into account. Updating the target pose at each time step to
an intermediate target pose, instead of setting it to the final
desired pose directly, ensures that the robot will proceed
cautiously to its final location, always “looking out” for new
obstacles obstructing its path to the goal. The variable speed
affects how fast the robot is expected to move to the final
target pose. Setting the speed to a low number allows the
robot to proceed more cautiously to the target pose, with
higher probability of effectively avoiding dynamic obstacles.
The motion of the obstacle is not known to the planning
algorithm, only the current obstacle location is shared at
each time step. Fig. 3 shows how the robot moves cautiously
while avoiding a cylindrical obstacle that is moving towards
the robot base. Initially, the robot attempts to move over the
cylinder, but as the cylinder moves out of the way, the robot
ends up finding a collision-free path around the side of the
obstacle.

B. Moving target: joystick-controlled motion

Similar to how dynamic obstacles are handled, the robot
is assigned a new target pose P

(ti)
B at every time step ti,

according to the direction of task-space motion dP instructed
by a joystick (e.g., pressing the “right arrow” will instruct the
end effector to move to the positive direction of the global y
axis without changing its task space orientation1). The new
target P (ti)

B is calculated relative to the current end effector
pose P (ti)

A , without any knowledge of the obstacles in the
scene, based on equation (7) with targetDirection = dP .

1) Static obstacles: This use case is tested in a sce-
nario where the robot is instructed to follow a task-space
joystick command while avoiding the static arm of an
operator. To enable collision avoidance, the human arm
is modelled as a set of ellipsoid meshes. The evolution

1In the realm of industrial robots, this operation is known as “jogging
the robot” using a handheld controller, referred to as teaching pendant.

of motion is shown in Fig. 4. Note how the final tar-
get pose is not static, as in Fig. 3, but varies according
to the obstacles the robot must avoid while completing
the motion. To see a video of the resulting motion, visit
https://github.com/stacymav/nonlinearmpc-content.

2) Moving obstacles: This use case is tested in a scenario
where the robot is instructed to follow a task-space joystick
command while avoiding the moving arm of an operator.
The motion of the robot is shown in Fig. 5 and can be
compared to the one performed when the human arm was
not moving (which is shown in Fig. 4). Notice how the
the manipulator ends up reacting to the updated human arm
locations at each time step by moving upwards much faster.
The intermediate target pose is always set to the direction of
the instructed motion (here towards the global y direction)
even if it coincides with an obstacle. Since the target pose
is not encoded as a hard terminal constraint, the algorithm
simply outputs, at each time step, an open-loop trajectory that
moves the robot close enough to the target while avoiding the
current obstacles. To see a video of the resulting motion, visit
https://github.com/stacymav/nonlinearmpc-content.

C. Experiment results: Pick-and-place warehouse scenario

The model predictive control algorithm was applied to
plan collision-free paths for a typical warehouse scenario
in which a robotic arm is instructed to pick up the objects
on a bench and place them on shelves. The resulting tra-
jectories from pure simulation are shown in Fig. 6. The
simulation results were validated in experiment using the
setup shown in Fig. 1. The experiment results are shown
in Fig. 7. A video of the experiment results is provided at
https://github.com/stacymav/nonlinearmpc-content.

VI. CONSIDERATIONS - DISCUSSION

This section discusses the optimization design and the
user choices that can affect the performance of a model
predictive control algorithm employed to generate collision-
free trajectories.

A. Cost function

As mentioned earlier, our objective is to plan a trajectory
from initial end-effector pose PA to target end-effector pose
PB without intersecting with obstacles in the environment

https://github.com/stacymav/nonlinearmpc-content
https://github.com/stacymav/nonlinearmpc-content
https://github.com/stacymav/nonlinearmpc-content


Fig. 7. The Kinova® robot arm is controlled to pick up three objects and place them on the shelves according to their color (yellow to middle shelf, and
green to top shelf), while avoiding obstacles in the scene. The experimental setup is explained in Fig. 1. A video of the experiment results is provided in
https://github.com/stacymav/nonlinearmpc-content.

while minimizing effort. In addition to the cost function
definition proposed in (3), there are multiple ways one can
formulate the cost function to achieve this single objective.

One approach is to formulate the cost around desired
performance (i.e., joint effort, or sum of joint angle dis-
placements [7], [26]) irrespective of the target pose PB .
This requires that the target pose is encoded in the termi-
nal constraint, instead, most often the final target pose is
constrained to be inside a target zone for added tolerance.
For pure trajectory optimization without the receding horizon
of model predictive control, this choice is preferred [6], [7]
because it guarantees reaching the target pose at desired
tolerance. In MPC, however, this would impose unnecessary
limitations to the solutions of a single optimization run: we
do not need the robot to reach the desired pose in a single run,
we just need it to move closer to the target compared to the
previous run. If we simply guarantee that the cost decreases
at each run, the robot will reach its target eventually.

A second approach is to include the target pose objective
in the cost function. The most straightforward way to achieve
this is to formulate the cost on the joint space, i.e., on the
joint positions error [21]. Target 6-DoF pose is mapped to
target n-dimensional joint configuration via inverse kinemat-
ics. This renders the cost function quadratic with respect
to the state x (i.e., robot joint positions q) but comes with
limitations arising from the kinematic redundancy of the
manipulators under study. In short, there are no guarantees
that the target joint configuration (derived as an inverse
kinematic solution) satisfies the problem constraints, and
there is no direct method to prioritize a subset of the 6 target
pose dimensions.

B. Time horizon

In trajectory optimization, the time horizon determines—in
simple terms—how much time one allows the robot to reach
its target destination. Therefore, it has a significant impact on
the algorithm performance. Instructing the robot to move a

1m distance in 2s while minimizing energy consumption will
result in a different motion from instructing it to move the
same distance in 10s. For some choices of the time horizon,
the robot cannot complete the instructed motion within the
time limits because of actuation constraints. When obstacles
are present, it is more challenging to estimate the time the
robot might need to reach a destination because there is no
straightforward way of knowing how the robot will try to go
around the obstacle.

In model predictive control, the choice of time horizon
has a different impact, possibly less critical. Because of its
iterative nature, as we explained earlier in the construction of
the cost function, we are able to include the target destination
requirement in the cost function instead of in the constraint.
This means that regardless of what the time horizon is, we do
not expect the robot to reach its destination within this time
horizon in any case. What we do expect purely for stability
purposes is that the cost will be reduced—or at least will not
increase—at every optimization run [27].

To promote a lower computational time as required by the
iterative nature of the optimization algorithm, a shorter time
horizon can be used. This is only possible because there is
no constraint on the final state of the optimizes trajectory—
the target robot pose is included in the cost function instead
(see (3)).

C. Initial guess of optimization problem

The initial estimate of the first MPC iteration is set
to the current joint state q with zero joint velocities and
accelerations (i.e., the robot is stationary at its current
configuration). Subsequent iterations use the suboptimal tra-
jectory of the previous iteration as the initial estimate. The
problem of insufficient convergence due to initial guess has
been addressed by researchers, with a number of solutions
proposed, including recently with an application of model-
based reinforcement learning [28].

https://github.com/stacymav/nonlinearmpc-content


D. Execution time

The execution time for a single run of the open-loop
trajectory optimization problem P in (2) depends largely
on the user choice of underlying utilities, such as optimiza-
tion solver and collision checking algorithm. The examples
presented in this paper were implemented with generic, not
problem-specific tools, resulting in an average of 0.6 seconds
of computation time per single open-loop solution.

VII. SUMMARY

This paper proposes the application of MPC algorithms
to reactive motion planning of robot manipulators by in-
troducing a suitable formulation of the open-loop trajectory
optimization problem. The proposed algorithm can be imple-
mented by leveraging off-the-shelf tools to enable industrial
applications. The approach is verified in both simulation
and experiment. We demonstrate how collision with ran-
domly moving obstacles can be more efficiently avoided by
incorporating intermediate target poses for each open-loop
optimization problem at every time step. Future work will
focus on verifying and proving convergence of the proposed
algorithm in diverse situations, including number and shape
of obstacles, and time step and time horizon selections.
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