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Abstract

Hybrid dynamic systems combine continuous
and discrete behavior. An overview of seman-
tic domains of dynamic behavior is presented
in terms of the evolution domain, the value
domain, and the execution domain. Simulation
of piecewise continuous behavior interspersed
with discontinuities is investigated in detail
and illustrated by an example that motivates
the use of simulation support for hyperdense
time as an evolution domain. Engineered sys-
tems are characterized by combinations of
compute elements, network connectivity, sen-
sors and actuators, and a physical component.
The various different elements benefit from
modeling formalisms based on various seman-
tic domains. Efficient execution is achieved by
a combination of time-driven and event-driven
execution engines.
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Introduction

Hybrid dynamic systems combine continuous
and discrete dynamics. In the literature, hybrid
dynamic systems are often referred to simply as
hybrid systems where system is to be taken as a
mathematical system (as opposed to a physical
system). Hybrid systems as a term, however, are
also used to refer to systems such as a hybrid
powertrain where a combustion engine and
electric motor connect to the driveline. Therefore,
to avoid confusion, the term hybrid dynamic
systems is used.

Hybrid dynamic systems enable a selective
choice in how to represent modeled phenom-
ena. Modeling a system under study by hybrid
dynamics allows improved efficiency in terms
of simulation. Moreover, the ability to include
behavior in a coarse sense prevents the need
for detailed parameter knowledge. For example,
when an electrical switch is opened, its current
flow does not fall to 0 instantaneously, but the
opening creates a quickly decreasing contact area
that results in a quickly decreasing change in
current. Moreover, a quickly increasing air gap
may support a brief moment of current flow with
a corresponding spark. The details of these effects
(the properties of the contact area and the air
gap as they change during a brief period of time)
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may be unknown and difficult to measure while
being irrelevant to the overall behavior of interest
(the current changes to 0). Other examples of
physical components that may be well modeled
by discrete on/off type behavior include diodes,
valves, latches, clutches, relays, and so forth.
Likewise, components that effect quick changes
compared to the overall behavior of interest such
as an analog to digital converter may be modeled
by discontinuous change in their behavior.

Even though systems that include components
with on/off or more generally discontinuous
behavior may be intuitively modeled as hybrid
dynamic systems (e.g., an antilock braking
system, a rectifier circuit, an overflowing tank),
a system under study is not intrinsically a
hybrid dynamic system. A model is a chosen
representation of a system under study depending
on a specific purpose. For example, to achieve
real-time simulation, a model that abstracts fast
temporal behavior into discontinuities oftentimes
is preferred. However, to gain insight in the
physics of a system, it is conceptually preferred to
capture fast behavior in detail (Breedveld 1996).

A key aspect of being a representation is that
a model must be simpler than the system under
study. Thus, a perfect copy would not be con-
sidered a model. This notion may be confounded
with the model being “wrong,” yet if the model
serves its purpose, it helps solve a problem, it is
in fact “right.” The quality of the model reflects
in its efficiency to solve the problem. Combining
continuous dynamics with discrete dynamics pro-
vides flexibility in modeling to include the detail
necessary but no more (conform the principle of
parsimony or Occam’s razor).

Models of hybrid dynamic systems can be
studied and leveraged in multiple ways, for exam-
ple, formal property proving to guarantee the
absence of design errors or automatic generation
of embedded code. The focus of this entry, how-
ever, is on numerical simulation of such mod-
els, that is, given a hybrid system model and
the initial conditions, numerically simulating the
execution of the dynamics on a computer. Such
an execution of hybrid dynamic systems requires
support for intricacies that bring to bear a unique
set of challenges beyond the execution of con-
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tinuous and discrete dynamics alone. In the pro-
ceeding, a number of motivating examples are
presented to introduce various different forms
of hybrid dynamic systems. Next, a range of
semantic domains for dynamic systems and their
execution semantics are introduced. The class of
piecewise continuous systems is then discussed
in detail as it embodies the broadest range of
behaviors specific to hybrid dynamic systems.
Next, the utility of the various different semantic
domains in multiparadigm modeling is sketched
followed by a discussion of execution engines
to achieve efficient behavior generation. Finally,
conclusions and open challenges are presented.

Motivating Examples

Examples of hybrid dynamic systems often used
in the literature include a thermostat, a bouncing
ball, and a freewheeling diode. Each of these
allows concentrating on a particular aspect of
hybrid behavior, namely, a discontinuous forcing
function, state reinitialization, and event iteration,
respectively.

Switched Control: A Thermostat
Switched control is a popular approach, for
example, for tackling nonlinear system behavior.
Piecewise linearization by approximating or
abstracting the nonlinear behavior using a
number of different modes of linear behavior
allows synthesis methods to find control laws in
each of the modes. Switching logic then selects
the corresponding mode as the system under
control (the process or plant) evolves.

Another example is a thermostat that employs
bang-bang control. Here, the actuation is at its

rx=Ax+u
X < min X = max
x=Ax |+
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Simulation of Hybrid Dynamic Systems, Fig. 2 Combining asymptotically stable behavior leads to unstable
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maximum (maximum heating) or its minimum
(no heating). Figure 1 shows a hybrid dynamic
system model of a thermostat as a finite state
machine with a differential equation that models
the behavior in each discrete state. The thermal
behavior of the room is represented by the dif-
ferential equation X = Ax + u with x being the
temperature and u the heating control input. The
heating u is active or not, depending on the state.
When the temperature falls below a minimum
(x < min), the heating turns on, and when the
temperature exceeds a maximum (x > max), the
heating turns off.

From a simulation perspective, there are two
important considerations: (i) does the model
always remain in one of the states for a duration
of time (i.e., is max > min) and (ii) is it
necessary to reset the numerical solver that
generates behavior for the differential equations?
The second concern depends on the solver type,
where a multistep solver exploits computed
values of previous time steps and assumes
a certain order of continuity between time
steps (Cellier and Kofman 2006).

While the simulation considerations are rel-
atively straightforward, from a control perspec-
tive, hybrid behavior may evidence problematic
behavior. For example, Fig. 2 shows two asymp-
totically stable behaviors, one on the left-hand
side and one in the center. When switched control
selects the behavior in the top-left quadrant of
the center behavior to produce the combined
behavior on the right-hand side, the resultant
behavior becomes unstable. Issues of stability,
reachability, nondeterminism, and so forth are
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particularly difficult in case of hybrid dynamic
systems but beyond the scope of the simulation
focus.

State Reinitialization: A Bouncing Ball

A key behavior to support in simulation of hybrid
dynamic systems is the reinitialization of states
in differential equations (the continuous state).
Figure 3 shows a model of a bouncing ball,
a much studied example of this behavior. The
differential equations that are active in the dis-
crete state capture the velocity of the ball, v,
as subject to the gravitational acceleration, g.
When the position of the ball, x, falls below 0 (to
represent the floor level), an elastic collision sets
the velocity of the ball to a new value vt based
on the velocity upon collision and a restitution
coefficient .

The discontinuity as introduced by reinitializ-
ing the continuous state requires the same numer-
ical solver considerations as the discontinuity
introduced by switching input of the thermostat
problem. The bouncing ball, however, highlights
detecting the collision event as a challenge. Con-
sider ¢ to be positive but less than 1. As the
ball bounces repeatedly, the maximum height of
each bounce progressively decreases. When this
maximum height becomes less than the numer-
ical tolerance set to detect whether x < 0, the



transition is always enabled. At this point, further
simulation becomes ill defined.

Event Iteration: A Freewheeling Diode

A key feature of hybrid dynamic systems
is the occurrence of a sequence of discrete
state changes with no duration of continuous-
time behavior in between. Figure 4a shows an
electrical circuit with two elements modeled
with discontinuous behavior: (i) the switch, S,
enforces a 0 voltage drop when closed and a
0 current flow when open, and (ii) the diode, D,
enforces a 0 voltage drop when on and a 0 current
flow when off. When the switch is closed, the
battery, B, supplies a voltage that builds up a flux
in the inductor, L. The corresponding current
flow creates a voltage drop across the resistor,
R, and when less than the battery voltage, this
results in a positive voltage across the diode in its
off state.

Figure 4b shows a model of the electrical
circuit as a state machine with three parts. At
the top, the equations for the inductor are shown
where the inductor flux, p, builds up based on the
voltage drop, Vp, across the parallel branch. The
current through the switch, /s, minus the current
through the diode, /p, is the inductor current and
directly represented as the flux per inductance, %.

Below the equations are two state machines,
one to model the behavior of the switch and one
for the diode. The switch is opened when time, ¢,
reaches 1. At the point in time when the condition
t > 1 becomes true, the switch changes its
behavior from allowing arbitrary current with O
voltage drop to allowing an arbitrary voltage with
0 current flow. Given that the diode also enforces
0 current flow, the inductor current is forced to 0,
which requires an instantaneous discharge of its
flux, p.

Because of the discontinuous change in flux,
according to the differential equation Vp = p, a
negative voltage spike across the parallel branch
would occur. This voltage, however, enables the
Vp > 0 condition (notice the orientation of the
diode with its positive port connected to ground),
and the diode comes on such that the diode
provides the inductor current instead of forcing
itto 0.

Simulation of Hybrid Dynamic Systems

In addition to the complexity of handling such
event sequences, hybrid dynamic system simula-
tion must handle impulsive behavior such as the
voltage spike. Moreover, the simulation must be
able to compute discontinuous changes in contin-
uous state from a system of equations (i.e., the
reinitialization value is not explicitly provided as
an assignment).

Semantic Domains

Given the notion that hybrid dynamic systems
combine continuous and discrete behavior,
it is instructive to investigate in more detail
the semantic domains used in modeling and
simulation. To establish a fundamental structure
of these semantic domains, note that the dynamic
nature of the systems implies there is a domain
on which behavior evolves. A behavior, f, is
then a mapping of an evolution to values where
a hybrid dynamic system can be thought of as
a partial function with the evolution domain, &,
as its domain and the value domain, V, as its
codomain

B:EV (1

In addition to the evolution and value domains,
dynamic systems often allow value changes at
specific instances only. These instances form the
execution domain, X.

Integer Evolution Behavior

In its basic form, an evolution domain comprises
a set of linearly ordered instances. This can be
represented by the natural numbers, N, even
if the metric notion may not be relevant. For
example, program code such as C, Java, and
MATLAB® (MathWorks® 2019), when single
threaded, follows a linear sequence of operations
that can be indexed by integers. Execution
of each operation follows completion of the
previous operation, and so a program counter
progresses along the integers without the need for
independent dynamic scheduling. The discrete
evolution domain is depicted in Fig.5a by a
dashed horizontal axis, while the execution order-
ing is represented by squared arrows between
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Dynamics model. (©) The
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consecutive execution instances. The solid
vertical arrow representing the value domain
captures the continuous values of computational
operations. The solid circles depict values
computed at discrete execution instances. It
should be acknowledged that computational
operations approximate continuous values by
floating point representations, and so the domain
is not truly continuous. In the value domain, this
distinction is not important to the discussion.

Time is an evolution domain that is integral to
hybrid dynamic systems. In computational imple-
mentations, it is often preferred to discretize time
in periodic steps of equal size, the sample time.
Figure 5b depicts time as a discrete evolution
domain such that it can be specified by difference
equations or synchronous data flow (Benveniste
et al. 2003). Note that the base rate of the sched-
uler has a sample time that is represented by the
vertical lines, but not every base rate sample hit
corresponds to the execution of an operation. For
example, in case of a system with operations that
have a sample time of 2s and operations that
have a sample time of 3s, the base rate has a
sample time of 1 s (the greatest common divisor).
At 5 s, the base rate has a sample hit but neither of
the other sample times does. As in programming
code, the value domain is continuous.

Because of the integer nature of the execution,
in case there is no real-time execution require-
ment, the scheduler may operate similar to the
execution of program code and progress along an
integer schedule. The sample times of operations
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are harmonics of the base rate and, therefore, exe-
cute at integer multiples of the execution index. In
case real-time behavior is required, each integer
advance is invoked based on a periodic interrupt
from the compute platform.

Similar in execution but different in behavior
is the discrete-time evolution domain shown in
Fig. 5c. Here, the value of a behavior changes
at a periodic rate, but the value is held and
accessible in between sample times. This is indi-
cated as a continuous evolution domain by the
solid horizontal arrow. For digital control sys-
tems, the zero-order hold (ZOH) approach is
often preferred, whereas for digital image pro-
cessing systems, a sampled time approach is
preferred because it does not affect the signal
frequencies.

Finite State Value Behavior
Finite state transition systems behave similar to
the integer execution of general computations in
Fig. 5. The corresponding semantic domains are
shown in Fig.6 where the finite state notion is
depicted as a discrete value domain by the dashed
vertical coordinate axis. Note that even though
in a computational implementation the states of
finite state transition systems are typically identi-
fied by integers, semantically the discrete values
that represent states are not ordered and are with-
out a metric.

Figure 6a illustrates the semantic domain of
transition systems (e.g., automata Alur and Dill
(1994) and Petri nets Murata (1989)) based on



6 Simulation of Hybrid Dynamic Systems
'Y L)
! v v
@ @ ® 2
e o @ o——<C
] —oO
(o]
———— T ——
T e e el A e e e et el > 1 >
1 f f

(a)

(b)

Simulation of Hybrid Dynamic Systems, Fig. 5 Integer evolution semantic domains. (a) Program code. (b) Sampled

time. (¢) Discrete time. (©) The MathWorks, Inc.

A A

v v

(a) (b)

B

Simulation of Hybrid Dynamic Systems, Fig. 6 Discrete value semantic domains. (a) Transition system. (b)
Sampled transition system. (¢) Discrete-time transition system. (©) The MathWorks, Inc.

a discrete progression of discrete state changes.
The states as well as the events that effect state
changes can be indexed by integer values. In
contrast to program code, the events are dynam-
ically generated and not preassigned as the com-
pletion of a previous operation. For example,
in a Petri net, the tokens in input places of
a transition determine whether the transition is
enabled. Thus, a scheduler dynamically sched-
ules the transition to be active as the token distri-
bution evolves. This dynamic execution behavior
is depicted in Fig.6 by the upward pointing
arrows.

The semantic domains of the sampled and
discrete-time versions of transition systems are
illustrated in Figs. 6b, c, respectively. Associating
time with the evolution domain enables sample
times on a continuous domain, while the execu-
tion behavior is discrete and periodic. Given the
dynamic scheduling nature, real-time behavior is
not a determining factor whether a scheduler is
necessary. In its execution, the sampled transi-
tion system corresponds to Mealy-type behavior
where actions are associated with transitions. The
discrete-time transition system corresponds to
Moore-type behavior where actions are associ-
ated with states.

Continuous Execution Behavior

Executing events on a continuous schedule that
is not periodic is the hallmark of discrete-event
systems such as the discrete-event system speci-
fication (DEVS) (Zeigler et al. 2000). Figure 7a
illustrates the semantic domain as a continuous
evolution domain and a continuous value domain.
Moreover, the discrete events at which value
changes occur can be scheduled on a continuous
execution domain. Note that transition systems
with events occurring on a continuous domain
would lead to a discrete value domain and bridge
the semantic domains in Figs.6b and 7a. How-
ever, in such transition systems, time itself is part
of the state as clocks that can be reset, which
creates a continuous value domain.

Behavior that is continuous in all its facets is
illustrated in Fig. 7b. This behavior can be spec-
ified by switched differential equations, and the
evolution domain in hybrid dynamic systems typ-
ically is time. Generating the behavior from the
differential equations is based on gradients with
respect to time. From an existing point in time,
the gradients are used to extrapolate the behavior
trace to a new point in time that approximates
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Simulation of Hybrid Dynamic Systems, Fig. 7 Continuous evolution and value semantic domains. (a) Discrete-
event system. (b) Continuous behavior. (¢) Discontinuities. (©) The MathWorks, Inc.

the underlying solution of the differential equa-
tion within a certain tolerance. If the behavior
changes quickly against time, the behavior gra-
dient is steep, and a small time step may be
necessary to meet the tolerance constraint. For
slow behavior, a larger time step may be possible.
The varying step size along the (horizontal) time
axis is depicted in Fig. 7b by horizontal arrows.

Piecewise continuous behavior interspersed
with discontinuities is shown in Fig.7c. The
corresponding semantic domain is the same as
the continuous behavior in Fig. 7b with the same
execution domain and scheduler.

The piecewise continuous behavior with or
without discontinuities may be considered to be
of a hybrid dynamics nature. Indeed, the change
from one piecewise segment of continuous-time
behavior to the next may be invoked by the
occurrence of a discrete event at the point in time
of the transition.

Multidimensional Evolution Domains
In discrete-event systems such as the one illus-
trated in Fig.7a, it is often desirable for two
events to occur at the same point in time, either
because they were scheduled as such indepen-
dently or because one causes the other with no
time delay.

Figure 8a sketches how multiple events at
a given point in time would lead to a two-
dimensional evolution domain. The double-
headed arrow pointing up indicates two such
events. Because both of those events have the
same time associated with them, in order to
distinguish their moment of occurrence (e.g.,
to order them), an additional index is necessary.

Hence, the moment of each event occurrence is
represented by a couple, (f,i), that comprises
the time, ¢, and an index, i. The index is an
element from an ordered set for which the
integers may be chosen (even if the metrics are
irrelevant). Figure 8a indicates the additional
integer dimension by a dashed axis at the time
when multiple events occur. Note that many
events may be dynamically scheduled at the same
point in time before the next time advance.

Similar to discrete-event systems, in hybrid
dynamic systems such as illustrated in Fig.7c,
multiple events may occur at the same point in
time. Likewise, an additional dimension would
be required in order to separate the moment of
occurrence for the multiple events. Figure 8b
illustrates the semantic domain with an additional
axis to represent the integer part of the evolution
domain at the point in time of the discontinuity
where the sequence of events takes place.

Piecewise Continuous Systems

Simulation behavior that is piecewise continu-
ous interspersed with discontinuities (e.g., the
semantic domains in Figs. 7c and 8b) introduces
complications that require special attention from
a hybrid dynamic system perspective. Referring
to Fig. 8b, four stages of execution can be recog-
nized:

e Continuous behavior evolution that may
require a solver reset in case continuity
assumptions about magnitude and higher-
order derivatives are violated when a
discontinuity occurs.
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* Detecting when events are generated, which
introduces numerical challenges around
threshold crossings.

e Support for multiple mode transitions at the
same point in time and handling of initial
states that are inadmissible or inconsistent.

* Reinitializing state based on discontinuities
that are implicit and require handling instanta-
neous changes as having either O or infinitesi-
mal duration.

Of these, first, the numerical challenges of event
detection are considered in more detail. Next,
challenges in the interaction between mode tran-
sition behavior and state reinitialization are stud-
ied after which a hyperdense evolution domain is
introduced. Finally, caution is drawn to a number
of pathological behaviors.

Event Detection

As a behavior evolves continuously, discontinu-
ities are specified to occur when either time or
behavior values exceed certain thresholds. The
former are referred to as time events, and their
time of occurrence is known when they are sched-
uled. The latter are referred to as state events
because the behavior values derive from the con-
tinuous state and the time of occurrence must
be dynamically determined (i.e., as the behavior
evolves) (Cellier 1979).

The threshold behavior of state events is spec-
ified by inequalities. For example, the thermostat
model in Fig. 1 generates events when the temper-
ature falls below min as specified by x < min or
when the temperature exceeds max as specified
by x > max. Note that the inequalities include
the threshold value (they include the equal sign)
so as to have clearly defined left limit values to

(b)

follow the progression of time. These causal (in a
temporal sense) limits imply that the intervals of
continuous evolution will be left closed and right
open (Mosterman et al. 1998a).

Detecting whether the value of a variable
crosses a threshold can be reformulated to detect
whether a function of that variable crosses 0. This
function is called an indicator function, g4, that
takes as input the continuous state of the system,
x, the forcing function, u, and time, 7. The
indicator function may differ per discrete mode,
«. The indicator function is used to determine
whether a zero crossing, zc, occurred based on its
sign:

1 if galx,u,t)>0
0 if galx,u,t)=0 (2)
-1 if ga(x,u,t) <0

zcq (X, u,t) =

In case zc changes its sign, an event is generated.
For example, for the freewheeling diode model in
Fig. 4b when the diode is in its off state (Ip = 0),
an indicator function is

$orr(V.p) = Vs — RY. 3)
where p is the continuous state and Vp is the
forcing function, while R and L are parameter
values for the resistor and inductor, respectively.
When this function changes its sign, a zero-
crossing event is generated.

Detecting whether a change of sign occurs
typically requires the indicator function to be
evaluated positively and negatively. Thus, the
indicator function fails to guard against invalid
operations (e.g., taking the square root of a
negative variable). Rather than returning an error,
the invalid operation may return a substitute value
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that enables successful zero-crossing detection
(e.g., the square root may return a negative value
based on the absolute value), while the substitute
value is never considered an actual (accepted)
simulation value. Note that there are techniques
to prevent invalid operations but at the cost of
efficiency (Esposito et al. 2001).

Even though including the equal sign
in threshold comparison results in sound
mathematical limit behavior, numerically it is
less meaningful. It is well-known in computer
programming not to check for equality involving
a floating point value, for example, as a loop
termination condition. Likewise, detecting
whether an indicator function equals 0 is
challenging. In a common approach, the 0 level
is defined as a “numerical 0” by a tolerance, tol.

1 if guo(x,u,t) > tol
0 if —tol <gu(x,u,t) <tol
—1 if galx,u,t)<—tol

an(-x7 M,l) =

“
Though a numerical zero enables the determina-
tion that the value of a behavior is (numerically)
0, it complicates detecting an actual crossing of 0
(i.e., a change in sign of the indicator function).
The tolerance around O allows a behavior to be
numerically O for a duration of time even if the
gradient is nonzero. And so the indicator function
may show a sequence of signs at simulation steps
as — - 0 — 0 — +. It becomes difficult
to determine whether this constitutes an actual 0
crossing or whether the behavior first settled at 0
and then started to deviate.

Another key challenge in zero-crossing detec-
tion is when an even number of crossings occur
within one simulation step. Figure 9 illustrates
the situation where the solid circles indicate val-
ues of the indicator function computed at two
consecutive simulation steps. The dynamics of
the indicator function allow its value to change
from negative to positive and back without a
change in sign being detected at the simulation
steps. One approach to mitigating this problem is
to include the indicator functions as part of the
step-size control that the numerical solver uses
for generating continuous-time behavior, which
introduces additional computational cost.

9
Simulation of Hybrid 4 ¢
Dynamic Systems, Fig. 9
Zero crossing with even N
zeros. (© The MathWorks, 0- . P &
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After detecting a zero crossing, the point in
time at which the indicator function changes
sign is located within a given tolerance (different
from the tolerance on the value domain). Well-
understood root-finding methods such as New-
ton’s method or a bisectional search can be used
for this purpose (Park and Barton 1996; Zhang
et al. 2008).

Mode Transition and State Reinitialization
The inequalities that give rise to mode transi-
tion events define where on the semantic domain
behavior evolution is admitted and where not.
Figure 10 depicts a sequence of mode transitions
from left to right. In the initial mode, o1, behavior
evolves in continuous time from an initial state
(the solid circle) according to the vector field
lines.

The gray area indicates an area of the semantic
domain that is inadmissible. Once the behavior
value exceeds the lower bound of the area, a
Zero-crossing event causes a transition to mode
ap. The state of the behavior immediately prior
to the mode transition taking place is used to
initialize behavior in mode «,. As shown in
Fig. 10, this state is in the inadmissible area of
mode o, causing an immediate further transition
to mode 3. Mode o3 consists of a jump space
as indicated by the double-headed arrows. In
this space, a discontinuous change in the jump
direction onto the continuous space takes place.
The one-dimensional continuous space is shown
as a solid curve with single-headed arrow. An
example of this behavior is the freewheeling
diode circuit in Fig.4a where the flux of the
inductor jumps to 0 when the switch is opened
and the diode is still off. Figure 10 shows that
in mode «3 after the discontinuous jump, the
state is in the inadmissible space, and a transition
to mode o4 takes place. In mode a4, behavior
evolves according to the vector field lines with
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the initial state being the state that resulted from
the discontinuous jump in mode o3. The behavior
evolution in a4 then reaches an inadmissible area
based on time exceeding a threshold value, and
further mode transitions may happen.

Figure 11 illustrates an alternative scenario
for the sequence of mode changes in Fig. 10. In
Fig. 11, the inadmissible space of o3 is larger
such that the initial state after transition from
mode o is in the admissible space already. Now,
before the discontinuous jump in o3 takes place,
the transition to mode a4 occurs, and behavior
evolution in mode o4 starts from a different initial
value.

Note that the discontinuous change of the
behavior state upon entering mode o3 is part
of the behavior specified for that mode instead
of a separately specified reinitialization. This is
well suited for models where the dynamics are
modeled by a system of differential and algebraic
equations (DAE). The algebraic part of these
equations defines the jump space, whereas the
differential equation part defines the continuous-
time behavior evolution space. The continuous
behavior evolves on a manifold in the generalized
state space, while the jump space corresponds to a
projection onto this manifold (Mosterman 2002;
van der Schaft and Schumacher 1996; Verghese
et al. 1981).

Alternatively, discontinuous change in the
behavior state may be specified when a transition
takes place from one mode to the next. For
example, the bouncing ball model in Fig.3
specifies a discontinuous change in velocity
when a transition from one mode to the next
(albeit the same) mode takes place. From a
physics perspective, it may be preferred to
have a mode associated with a discontinuity
so the configurations of phenomena that cause
the discontinuity are clear and to support
compositionality. For the bouncing ball model,
there is no model of the floor as a source of 0
velocity, while in general in collision models, this
is preferred. Figure 12 shows Newton’s cradle
where in case of a perfectly elastic collision (a
coefficient of restitution of 1 for the difference in
velocities after and before the collision: AvT =
—Av) with equal masses m; = m, = ms, the
momentum of m; first fully transfers to m, and
immediately following to m3. By modeling the
masses and the collision phenomenon between
the colliding masses (1 collides with m, and m»
collides with m3), additional masses are easily
added (though great care must be taken when
masses are not equal or coefficients of restitution
are not 1 Mosterman (2007b)). Note that this
model results in a sequence of projections, each
of which requires a change in physical state
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series of reinitializations based on redistribution of
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before a new mode of continuous behavior is
reached.

A Mode Transition and Reinitialization
Example

Figure 10 illustrates three classes of mode
behavior:

¢ Continuous evolution with a state event in
mode «; and a time event in mode a4

¢ Immediate consecutive transition in mode o>

* Transition after an instantaneous projection in
mode a3

The electric circuit in Fig. 13 is an example with
physical behavior that can be modeled according
to each of these. The four inductors (L1 through
L4) store an initial flux (pl through p4) that
corresponds to each of their currents (/1 through
14) by the equation I = %. The resistor, R1, fol-
lows Ohm’s law and creates a voltage difference
(positive from the left to right connection), V,
based on the current through R1, I,as V = I-R1.
The three diodes (D1 through D 3) either limit a
positive voltage difference to O (the on state) or
a negative current to 0 (the off state). Similarly,
the switch, Sw, enforces a 0 voltage difference
when in its closed state or a 0 current when in its
open state. Initially, the switch is in its open state.
Assume the inductances L1, L2, L3, and L4 to
be equal to 1.

Consider the scenario that starts with a time
event at Zsieen When the switch is opened while
the flux distribution is pl = 37, p2 = 38.8,
p3 = 30, and p4 = 30, as shown in Fig. 14a.
With the switch closed, the voltages at each of
the junctions are 0. The difference in current
through L1 and L2 results in a voltage across R1
that is balanced by a corresponding but negative

Simulation of Hybrid Dynamic Systems, Fig. 13
Electric circuit with different types of discontinuities. ©)
The MathWorks, Inc.

voltage across L2. The open switch results in an
inconsistent physical state (flux distribution) as
opening the branch forces p2, p3, and p4 to be
equal (given that L2 = L3 = L4). The increase
in p4 induces a voltage spike as indicated by
the + sign in Fig. 14b which causes diode D3 to
come on and force the junction to a 0 voltage
instead as illustrated in Fig. 14c. Because D3
comes on as a result of the projected change in
flux distribution in Fig. 14b, that flux distribution
is never achieved, and redistribution in Fig. 14c
is determined based on the original flux distri-
bution in Fig. 14a. Since the intermediate mode
in Fig. 14b does not affect the ultimate physical
state, it is called a mythical mode (Mosterman
et al. 1998b; Nishida and Doshita 1987).

Once a consistent flux distribution is deter-
mined, it can be adopted as the current state.
Because physical in nature, redistributing fluxes
is modeled to require an infinitesimal period of
time, €, and the event iteration resumes at this
new point in time, fgyien + €. Figure 15a shows
the adopted consistent state and the voltages and
currents that correspond to the new state. Because
p1 has become larger than p2, a negative current
would flow through D1 and so the diode turns off.
Also, the positive current flow through R1 that
is induced by p2 causes a positive voltage drop.
Because the junction to the left of R1 is at 0 volt,
the right-hand port of RI is negative. With L2 =
L3 and D2 off, the voltage drop across both L2
and L3 must be equal, which is half the positive
voltage drop across RI. This negative voltage
causes D2 to come on. Figure 15b shows the new
mode with the newly required flux distribution
because L1 and L2 are now coupled, while L3
has become decoupled.
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Simulation of Hybrid Dynamic Systems, Fig. 15 Time is advanced by € to model the physical state (flux) change
and a consecutive change follows. (a) (fswitch + €, 0). (b) {Zswiten + €, 1). © The MathWorks, Inc.

Since no further mode changes occur, time
is advanced by an infinitesimal amount, and the
flux redistribution is adopted as the next physi-
cal state. Figure 16a shows this mode and flux
distribution as the starting point for the next
event iteration. Because the changed flux of L2
exceeds that of L3, D2 would have a negative
current and so D2 turns off. As a result, L3 is
coupled with L1 and L2, and Fig. 16b shows the
corresponding flux redistribution. At this point,
no further mode changes occur, time is advanced
by an infinitesimal amount, and the redistributed
fluxes are adopted.

Figure 17a shows the flux distribution at
tswiteh + 3€ as well as qualitative values for the
voltages and currents. The current through R1
causes a positive voltage drop that is equally
distributed as negative voltage across each of the
inductors L1, L2, and L3 such that the sum of
voltages equals 0. This causes D2 to turn on,
as shown in Fig. 17b. At this point, no further
mode changes occur and no flux redistribution
is required. Therefore, the sequence of mode
changes, and reinitialization terminates so that
continuous-time behavior evolution resumes.

Modeling Diode Behavior
Figure 18 shows the diode model used for sim-
ulation of the electrical circuit in Fig. 13. Note
that the switching conditions do not include 0
(i.e., the voltage must exceed O or the current
must fall below 0 before being limited to 0).
Otherwise, consider the case where a diode is in
its on state and enforcing a 0 voltage when it is
determined that the current would fall below 0. In
this situation, the diode would change its state to
off, but without any changes in the physical state
of the circuit, the corresponding voltage would
still be 0. Hence, if the switching conditions
would include 0, the diode would immediately
switch back to its off state, and an infinite loop
of state changes from on to off and back arises.
Mathematically, not including the boundary of
a switching area may be complicating since the
point in time of switching and the limit value at
this point are not well defined. A threshold value
that must be exceeded eliminates this concern
(e.g., switching conditions Ip < I;; instead of
Ip < Oand Vp > V;, instead of Vp > 0
in Fig. 4b). In simulation, however, the threshold
values are a numerical effect when the switching
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Finite state machine model of a diode. (©) The Math-
Works, Inc.

conditions Ip < 0 and Vp > O are used and a
threshold value is not strictly necessary.

Also note that the diode model in Fig. 18 is
formulated as a finite state machine, whereas
sequential logic is not necessary to capture the
desired behavior. For example, in a complemen-
tarity formulation (van der Schaft and Schu-
macher 1996), an ideal diode is modeled by an
equality that requires either /p or Vp to be 0
while complementing the equation with inequali-
ties that require either the voltage to be less than
or equal to O or the current to be larger than or
equal to O:

0="Vplp
—Vp =0 ®)
Ip >0

Complementarity formulations are effective in
modeling discontinuous behavior of different
forms (e.g., rigid body mechanics (Pfeiffer and
Glocker 1996)). The use of sequential logic
covers a broader range of phenomena in hybrid
dynamic systems, though, and sometimes is
required (e.g., a latched bitank system (Moster-
man and Biswas 1995)).

A Hyperdense Semantic Domain and
Numerical Simulation

As the example in Fig. 13 shows, the semantic
domain of piecewise continuous models of phys-
ical systems requires three aspects:

e A continuous domain for continuous-time
behavior evolution

¢ An infinitesimal domain for discontinuous
changes in physical state

¢ An ordered domain for mode changes

The ability to separate discontinuous change in
physical state from mode changes is illustrated
in Fig. 14c. With the flux distribution at fyitch,
the current through D1 keeps D1 on. The current
at fewieh + €, however, is such that D1 turns
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off. If the infinitesimal time step would not be
required to advance the flux distribution, D1
would turn off before D2 turns on, and a different
behavior from what is shown in Fig. 15b would be
generated.

The set of hyperreals, xR, of nonstandard
analysis (Keisler 2012) embeds infinitesimals in
the set of reals, R, and so *R supports the seman-
tic domain for continuous-time behavior evolu-
tion and infinitesimal time steps. In addition,
the set of integers support the ordered domain
of mode changes. Hence, *R x N provides a
hyperdense semantic domain that supports the
necessary detail to separately evaluate the discon-
tinuous and mode change behavior (Mosterman
et al. 2014).

Numerical simulation requires discrete-time
steps to evolve behavior on the reals, R, while the
infinitesimal time advances can be captured by an
integer count of infinitesimal steps during mode
transition sequences. The resulting domain for
numerical simulation becomes three dimensional
as R x N x N. For example, the mathematical
moment of evaluation in Fig. 14a is (fgwitcn, 0)
with the numerical simulation step being identi-
fied as (fswiten, 0, 0). Likewise, the mathematical
moment of evaluation in Fig. 17b is (fgwiten +
3e, 1) with the numerical simulation step being
identified as (fswitcn, 3, 1).

The results of a simulation with HYBR-
SiM (Mosterman 2002) where R1 = L1 =
L2 = L3 = L4 = 1 from time 0 to 0.5s are
shown in Fig. 19. Before the switch is opened at
t = tewiteh = 0.2s, the flux p2 decreases because
of the dissipative effect of R1. After the switch
is opened and the mode transition sequence
has converged, the fluxes pl and p2 decrease
equally (overlapping traces in the graph) because
D1 is off. Figure 20 shows the mode transition
sequence at ¢ = 0.2s in detail where the indices
represent the evolution tuples as 1 : (0.2,0,0),
2 :(0.2,¢6,0), 3 : (0.2,2¢,0), 4 : (0.2, 3¢,0),
and finally 5 : (0.2, 3¢, 1). Figure 20a shows the
consistent modes for each point in time including
the initial mode when the switch is still closed.
The overall mode is comprised of a combination
of the discrete state of three junctions where
the first and last junction are fully determined
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by the state of the corresponding diodes, D1
and D3, respectively. The state of the second
junction depends on the combination of the
switch, Sw, and diode, D2. If the switch is closed
or the diode is on, the junction is on, whereas
the junction is off otherwise. Figure 20b shows
the consistent flux distributions for each of the
modes in Fig.20a with the initial distribution
of the fluxes immediately before the switch is
opened (Zswitch)- Note that the intermediate modes
(before an accepted flux distribution is reached)
are not logged in simulation; only values in time
as simulated hyperreals (i.e., a tuple of time and
number of infinitesimal steps from a point in real
time) are shown.

Pathological Behavior
Simulation of mode transition behavior may
encounter a number of behaviors that are
challenging to handle. First, the hybrid dynamic
system may exhibit sliding behavior as illustrated
in Fig. 21. When the behavior reaches the switch-
ing (inadmissible) area (where the boundary is
included in the switching condition) in mode o1,
a transition is made to mode «,. The behavior in
mode o starts on the boundary of the switching
(inadmissible) area where the boundary is not
included. As soon as continuous-time simulation
restarts, the mode transition back to «; occurs.
After a similarly small time step, the dynamic
field lines push the behavior in mode «; back to
the switching boundary, and repeated switching
occurs with the minimum step size that the
numerical simulation allows. Such behavior is,
for example, the purview of sliding mode control
(such as used in antilock braking systems),
and special simulation algorithms (Mosterman
et al. 1999) can be used to filter out the fast
switching behavior while retaining the slow
dynamic behavior along the switching boundary.
Second, in case of overlapping switching areas
in Fig.21, as soon as the switching boundary in
mode «; is reached, the behavior enters an infi-
nite loop of mode transitions that occur in O time.
Hence, simulation of the dynamic behavior halts,
which is typically undesirable (e.g., because this
is inconsistent with observed behavior in the
physical world). This behavior may be difficult to
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determine as present in a hybrid dynamic system
model and often cannot be detected other than
when exhibited during simulation.

Third, mode transitions may occur at progres-
sively smaller time steps such as described for
the bouncing ball model in Fig.3. In an ideal
mathematical model, time converges to a limit
point. In a numerical simulation, behavior may be
ill defined when the numerical time step moves
past the limit point. Note that the existence of a
limit point may be difficult to detect, even during
simulation.

Multiparadigm Modeling

Modern engineered systems increasingly rely on
computational elements (e.g., microprocessors,
microcontrollers, and field-programmable gate
arrays) and a communication infrastructure
(e.g., wired or wireless networks). Even if
such engineered systems are not intrinsically
hybrid dynamic systems, the physics are often
best represented at a macroscopic level by
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models with continuous-time semantics, and
the computation is often best represented by
models with discrete-time or discrete-event
semantics. A structure of such systems with
the various different components is shown in
Fig.22. At the bottom is the physical world.
Sensors and actuators connect the physical world
with the digital world via built-in computational
elements. The network connectivity of these
sensors and actuators enables communication
with other sensors and actuators as well as
powerful microprocessors or other computational
elements.

Different formalisms are typically required
to model the behavior of the various different
components. At the microprocessor level,
program code (semantic domain of Fig.5a),
synchronous data flow and difference equations
(semantic domain of Fig.5b), as well as state
transition diagrams (semantic domain of Fig. 6b)
are often used. Modeling network behavior
generally requires the ability to capture different
event densities over time for which discrete-
event systems are preferred (semantic domain
of Fig.7a) (Cassandras et al. 2006; Cervin
et al. 2003; Zeigler et al. 2000). Because of the
interaction with the continuous-time models of
the physical world, sensors and actuators are

Simulation of Hybrid
Dynamic Systems,
Fig.22 Multiple semantic
domains in engineered
system modeling. © The
MathWorks, Inc.

Microprocessor

Physics

often modeled as discrete time with zero-order
hold (semantic domain of Fig.5c). Finally, the
macroscopic behavior of physical systems is
well represented by differential equations with
discontinuous changes that occur at specific
points in time (semantic domain of Fig. 7c).

The combination of this scala of modeling
formalisms with the variety of semantic domains
to be used for simulation is the purview of multi-
paradigm modeling (Mosterman and Vangheluwe
2004). Hybrid dynamic systems are thus funda-
mental to multiparadigm modeling where hybrid
means combining different semantic domains.

Behavior Generation Engines

In terms of efficient execution, handling contin-
uous time is the first and foremost challenge.
Continuous-time behavior progresses along
the gradient of differential equations. When
thresholds are exceeded, zero-crossing events
are detected and then located, and their effect is
evaluated before time progresses further. Because
of the progression of state values along time,
this is called time-driven execution. In contrast,
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discrete-event behavior schedules events in the
future by keeping an event calendar. The event
that is scheduled earliest in time is removed from
the calendar, current time is set to the event time,
and the event is processed. This processing may
cause further events to be scheduled or already
scheduled events to be canceled (removed from
the calendar). Once processing completes, the
current time is set to the time of the earliest
scheduled event, and the event is processed.
Because time evolves in discrete steps based on
scheduled events, this is called an event-driven
execution (Mosterman 2007a).

Figure 23 depicts a time-driven execution
engine on the left-hand side and an event-
driven execution engine on the right-hand side.
The bottom traces represent continuous-time
evolution on the left and discrete-event evolution
on the right. Note that at event times (e.g., zero-
crossing events or scheduled discrete events),
multiple evaluation steps may take place that
may be scheduled as events in turn. Also, in
case of piecewise continuous behavior, a series
of infinitesimal steps may be scheduled before
time-driven execution resumes.

Statically scheduled events because of peri-
odic behavior (e.g., discrete time with a single
or multiple rates and synchronous data flow)
can either be included in a time-driven or an
event-driven execution engine. Figure 23 shows
discrete-time behavior as part of the time-driven
execution engine because the zero-order hold

behavior closely aligns with the continuous-time
behavior and is typically used because of interact-
ing behavior. Without hold behavior, complicated
semantic challenges may arise in interacting with
minor time steps of numerical solvers (Denckla
and Mosterman 2008). Otherwise, the discrete-
time behavior schedules a time event, and the
numerical solver will evaluate the differential
equations at that point in time, then evaluate the
discrete-time operations, and resume continuous-
time behavior.

Figure 23 shows synchronous behavior as part
of the event-driven execution engine because
of the discretized time domain. Also, data flow
comes in statically scheduled and dynamically
scheduled forms and hence is more closely
related to discrete-event systems.

While the architecture in Fig.23 allows the
most efficient simulation mechanism (time driven
vs. event driven) for each evolution domain, the
moments of interaction must be handled effi-
ciently as well. In one form, the interaction may
consist of the time-driven model part scheduling
or canceling an event for the event-driven model
part (e.g., when the strength of a communicating
signal falls below a threshold level, a message
may be sent to a transmitter). In another form, the
event-driven model part may schedule an event
for the time-driven model part (e.g., a network
message may set a threshold value for a valve to
open). As a result, when an interacting event is
scheduled or canceled, the behavior evolution of
the receiving model part may change.



Two basic approaches can be employed to
handle the interaction effects:

e With conservative execution, the engines
operate in lock step. The event-driven
execution engine may change its current time
to be ahead of the current time of the time-
driven execution engine but first stores the full
state of the event-driven execution engine. The
time-driven execution engine then catches up
before the event-driven engine makes another
step and the process repeats. If the time-
driven model part generates an interacting
event while in the process of catching up,
the event-driven execution engine restores its
full state, the interacting event is added to the
event calendar, and the interacting event is
processed next.

e With optimistic execution, the engines are
allowed to process more than one step ahead
of each other. For example, it may be efficient
both for the event-driven engine and the time-
driven engine if one processes a number
of events before the other catches up. In
this scheme, it becomes key to determine
when the full engine state should be stored
to enable quick reconstruction of the state
at which an interacting event occurred. In
advanced methods, an intermediate state
may be reconstructed in approximation by
an interpolation polynomial (which may be
more efficient than reconstructing a state via
simulation).

Conclusions

Hybrid dynamic systems may refer to various
combinations of behavior and execution seman-
tics:

¢ A continuous evolution domain with a combi-
nation of continuous and discrete behavior in
the value domain.

e The cross product of evolution domains such
as a continuous domain combined with an
integer domain.
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¢ A combination of different semantic domains
such as discrete-time and continuous-time
behavior.

* A combination of different execution engines,
for example, an event-driven engine combined
with a time-driven engine.

Generating an event from a continuous-time
behavior via zero-crossing detection and location
is both challenging to be sound and to be
efficient. Generating a new mode of continuous-
time behavior with a consistent continuous-time
state from discrete changes is challenging as
well. In particular, among the richest of hybrid
dynamic system behaviors is the piecewise
continuous semantic domain. With a continuous
value domain, a three-dimensional hyperdense
evolution domain emerges to account for
sequences of state reinitialization and mode
transition behavior.

Note that modeling mode transitions as either
occurring in 0 time or in infinitesimal time has
been shown to be an important consideration
beyond simulation, namely, in reasoning about
discontinuous change, with corresponding
direct and approximate reasoning methods,
respectively (Nishida and Doshita 1987).

Much progress has been made in hybrid
dynamic system simulation. Still, open chal-
lenges remain. These include how to:

* Solve or resolve some of the pathological
behaviors.

— Statically (i.e., before simulation) deter-
mine whether the simulation may reach an
infinite loop of 0 time mode transitions.

— Find the limit points for converging time if
present.

— Develop robust simulation algorithms for
higher-dimensional sliding behavior.

¢ Simulate impulsive behavior (e.g., support
comparison of impulsive quantities such as
voltage spikes and impulsive forces).

As a caution in closing, combining continuous
behavior with discrete changes results in behavior
that is highly sensitive to perturbations in the
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initial state and parameters of the model but also
to the solver parameters. Without a fundamental
solution, good practice is to check sensitivity
effects by using different solvers and parameters.
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