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ABSTRACT
Simulink and Stateflow are tools for Model-Based Design that sup-
port a variety of mechanisms for modeling hybrid dynamics. Each
of these tools has different strengths. In this paper, a new model-
ing construct is presented that combines these strengths to enable
graphical modeling of hybrid dynamics within a single Stateflow
chart. A new type of Stateflow state that acts as a Simulink sub-
system is developed to facilitate graphical modeling of continuous
dynamics using Simulink blocks inside Stateflow. Remote textual
and graphical state access using new state-accessor blocks enables
continuous states to be used in transition guards and reset actions.
Key features of this new formalism are illustrated using various
examples with hybrid dynamics.
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1 INTRODUCTION
Model-Based Design of complex systems involves creation of math-
ematical models that serve as a basis for the design and analysis
of the underlying system. Simulink® and Stateflow® tools provide
a powerful framework for graphically modeling system dynamics
by enabling users to drag and drop individual modeling elements—
such as Simulink blocks or Stateflow states—that form the building
blocks of system dynamics. These elements can be interconnected
and hierarchically and parallely composed to model complex cyber-
physical systems (CPS). Simulink and Stateflow tools, along with
their auto-generated code, are routinely used in the automotive,
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aerospace, and other CPS domains. They have also been recently
used successfully in such complex projects as the Pluto fly-by mis-
sion [7] and NASA’s Orion spacecraft test flight project [13].

Simulink and Stateflow provide different modeling capabilities
for modeling hybrid dynamics. There are a number of ways in
which hybrid systems can be modeled using only Simulink, only
Stateflow, or a combination of the two. This tool paper presents a
new modeling syntax that combines the strengths of these tools
together for modeling hybrid-dynamic systems.

2 BACKGROUND
2.1 Dynamic system simulation in Simulink®

A Simulink block can be mathematically defined as follows.

Definition 2.1. Simulink Block. A Simulink block is a tuple
(xCT ,xDT , fCT , fDT ,д,u,y,x0), where:

• xCT and xDT are (possibly-empty) continuous-time (CT) and
discrete-time (DT) state vectors, together addressed as the
continuous-valued state vector x ;

• u and y are the input and output vectors;
• fCT is the derivative function, i.e., ÛxCT (t) = fCT (u(t),x(t)),
numerically integrated by an ODE solver at appropriate time
points t based on the solver characteristics (e.g., number of
internal states and error tolerances);

• fDT is the update function, i.e., xDT (t+dt) = fDT (u(t),x(t)),
with stepsize dt determined by the (specified or inferred)
sample rate of the block;

• д is the output function, i.e., y(t) = д(x(t),u(t)); and
• x0 is the initial value of the state vector x , i.e., x(0) = x0,
which can be either defined as a block parameter or read as
an external input.

As a software implementation, each block defines block methods
that correspond to the different equations defined above. Every
block must define its output method, and may define initialize, up-
date and/or derivative methods to realize the corresponding equa-
tions as applicable. Simulink’s execution engine calls these methods
in a pre-determined order in a loop, called the simulation loop, until
the simulation stop time is reached [12]. Additionally, blocks that
have a discontinuity in their output (e.g., switch blocks) also define
a zero-crossing method that, if enabled, helps the Simulink engine
precisely locate the time of the discontinuity [17].
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Definition 2.2. Block Diagram. A Simulink block diagram is
a (hyper-)graph (NSL ,ESL), with Simulink blocks as nodes NSL ,
and signal or communication lines representing the connectivity
constraints as edges ESL .

Each node nSL ∈ NSL can either be an individual block or a
subsystem, which is a hierarchical composition of blocks that has its
own block diagram. Signal lines, message connections, and function-
call lines are examples of the connectivity constraints eSL ∈ ESL .

Definition 2.3. Stateflow Chart. A Stateflow chart is a finite-
state machine modeled as a (hyper-)graph (NSF ,ESF ), with nodes
NSF representing the states and edges ESF representing the state
transitions of the finite-state machine.

Each node nSF ∈ NSF can be an individual state or a subchart,
which encapsulates another Stateflow chart.

As a software implementation, a Stateflow chart is a Simulink
block that defines all the relevant block methods based on its dy-
namics. Like any Simulink block, a chart can have external I/Os u
and y, as well as internal state x . The entry, exit and during actions
defined on the states, as well as transition actions, can modify x
and y as a function of x and u. Transition guards can depend on u
and x .

2.2 Existing alternatives for modeling hybrid
dynamics in Simulink® and Stateflow®

(1) Type I: Only Simulink. Simulink provides a variety of
blocks for modeling mode switches using explicit mech-
anisms such as switch blocks and conditionally-executed
subsystems, or, implicit mechanisms such as saturation and
external reset. The STARMAC quadrotor model from [10]
and the Simulink example models sldemo_bounce [4] and
sldemo_clutch [1] are examples of the Type I approach.

(2) Type II: Only Stateflow.
Since R2007b, a textual syntax for modeling continuous dy-
namics in the ‘during’ actions of Stateflow states allows the
modeling of hybrid automata. The abstract powetrain con-
trol model from [11], the DC-DC converter from [15], and
the Simulink bouncing ball example sf_bounce [3] use this
Type II approach.

(3) Type III: Mixed Simulink and Stateflow. This approach
uses Simulink blocks kept outside the Stateflow chart to
model continuous dynamics; and signal lines between Simulink
and Stateflow for (i) guard conditions in Stateflow that de-
pend on state(s) of one or more Simulink blocks, (ii) control
outputs from Stateflow that are used to drive the subsys-
tem corresponding to the active mode, and (iii) reset values
computed in Stateflow to drive the external initial condition
(EIC) port of a Simulink block. Type III examples include: hy-
brid systems modeled using CheckMate [9], the cardiac cell
model from [8], and the Simulink example model sf_yoyo
[6].

2.3 Shortcomings of existing approaches
(1) No central location for modeling mode switching. In

Type I models, the mode-switching blocks can be distributed

throughout the model hierarchy. These blocks and their zero-
crossings (ZCs) could potentially always be evaluated, al-
though some might be infeasible in the current mode of
operation. Models can be rearchitected to be efficient, but
this requires additional effort on the modeler’s part.

(2) Need for external ports. In Types I and III, transition guards
and reset actions that read or change continuous state re-
quire the use of state ports and EIC ports. State ports provide
an estimate of the state at the next time step without account-
ing for the reset; when used in a mutually-resetting context
the simulation answer can be susceptible to block sorting.
The use of output ports in place of state ports can cause
algebraic loops that necessitate the use of memory blocks
(e.g., in sldemo_bounce [4]), which introduces unnecessary
artifacts.

(3) Limitations of the textual syntax. Type II modeling has
recently seen adoption from the academic research com-
munity, but writing out complex continuous dynamics in a
textual syntax in Stateflow does not scale to the large-scale
industrial models. Long and complex textual equations may
be hard to read and debug.

(4) Signal lines between Simulink and Stateflow. In the Type
III approach, signals need to be passed back and forth be-
tween Simulink and Stateflow for the evaluation of guards
and switching of the continuous dynamics, which may lead
to diagram wclutter.

3 GRAPHICAL HYBRID AUTOMATA IN
SIMULINK® AND STATEFLOW®

We present a new formalism, available starting release R2017b, for
graphical modeling of hybrid dynamics in Simulink and Stateflow
that overcomes the shortcomings of existing alternatives for mod-
eling hybrid dynamics outlined in the previous section.

As a running example for illustrating the new formalism, we con-
sider the lockup behavior of a clutch that consists of two plates that
transmit torque between the engine and transmission [1]. When
the clutch is disengaged (also called slipping), the two plates rotate
freely. When the clutch is engaged (also called locked), the two
plates rotate in a synchronized manner. The transitions between
the engaged and disengagedmodes depend on the relative velocities
of the two plates and the kinetic friction between them.

Definition 3.1. Graphical Hybrid Automaton. A graphical hy-
brid automaton (GHA) is a Stateflow chart that is a graph (NGH ,EGH ),
s.t.

• nodes NGH are Stateflow states, called Simulink based states
in Stateflow, which have an associated block diagram that
graphically defines their dynamics; and

• EGH is a set of transitions eGH = (sGH ,dGH ,дGH ,aGH ),
where
– sGH ,dGH ∈ NGH are the source and destination states;
– дGH is a transition guard that evaluates to a Boolean; and
– aGH is a transition action.

Figure 1 shows a GHA for modeling clutch dynamics using two
Simulink-based Stateflow states Slipping and Locked and transi-
tions between them. The guards on the transitions between the
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Locked

yn = detectLockup(Tin,Tfmaxs)Simulink Function
Slipping

f

yn

Requisite Friction Break Apart
Detection

Tfmaxs

Tin

Tf

[yn,Tf] = detectSlip(Tin,Tfmaxs)Simulink Function

[detectLockup(Tin, Tfmaxs)]
{Locked.w = Slipping.we;} [detectSlip(Tin,Tfmaxs)]

{
Slipping.we = Locked.w;
Slipping.wv = Locked.w;
}

Figure 1: GHA of a clutch. © The MathWorks, Inc.

states are denoted by square brackets, and the transition functions
are denoted by the curly braces, as per the Stateflow syntax.

3.1 Simulink® states in Stateflow®

We have developed a new kind of Stateflow state, called a Simulink
based state, whose internal dynamics can be defined as a subsystem
using Simulink blocks. This new state can be dragged from the
Stateflow palette and dropped from onto the canvas, and double-
clicking on it opens a Simulink canvas where users can graphically
model dynamics as if it were a Simulink subsystem. Each Simulink
based state by default has the same I/Os as the parent chart, but
is allowed to have a subset of I/Os. Unused I/Os can either be
terminated/grounded or simply deleted.

A Stateflow chart can compose Simulink based states along with
other Simulink and/or regular states in the same chart in any com-
bination as per the Stateflow syntax: sequentially using exclusive
(OR) decomposition, or parallely1 using parallel (AND) decomposition
[5]. Hierarchical composition is supported just as in Simulink, e.g.,
by using subsystems, model blocks, or Stateflow charts inside a
Simulink based state.

1Stateflow does not compute a product automaton, but executes parallel states based
on a deterministic order [2].
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Figure 2: Dynamics inside the Slipping state from Fig. 1.
© The MathWorks, Inc.
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0 1 2 3 4 5 6 7 8 9 10

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
pe

ed
s

Clutch Speeds vs. Time

Engine Speed
Vehicle Speed

Figure 4: Simulation results for GHA from Fig. 1. © The
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Figures 2 and 3 depict the dynamics of the Simulink based states
Slipping and Locked from the GHA in Fig. 1. The former models
the rotational dynamics of an unlocked clutch with two integrator
blocks for two distinct angular velocities, and the latter models a
locked clutch with only one integrator that models the joint angular
velocity. The simulation results are plotted in Fig. 4, which shows
regions of both overlapping and non-overlapping curves as a result
of the mode switching.
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3.2 Remote access of continuous state
Unlike hybrid automata formalisms in the literature and the Type II
approach, the graphical nature of GHA means that the continuous
state is present inside individual Simulink blocks. For the purpose
of accessing it in transition guards and reset actions, we present
two approaches.

3.2.1 Textual remote access. On naming the state (‘state name’
parameter of a stateful block), the corresponding state is made
available for direct access as a corresponding named variable in
transition guards and actions in the chart. Names are resolved by
dot notation, e.g., the read access Locked.w or the write access
Slipping.we in Fig. 1.

3.2.2 Graphical remote access. For more complex computation
that are either too cumbersome or impossible to be written as
textual equations, we have developed two new types of Simulink
blocks called state reader and state writer blocks, collectively called
state accessor blocks. They remotely access the state of a uniquely
identified state owner block, e.g., block EngineSpeed from Fig. 5
that reads the state from block xe from Fig. 2. When used as a
guard, a Simulink function graphically computes a Boolean output
based on the read states. When used as a transition reset action, it
graphically computes values to be remotely written.

Block annotations with hyperlinks and edit-time graphical high-
lighting from the Stateflow symbols pane are available for bi-directional
traceability between the state owner blocks and their corresponding
graphical or textual remote access.

3.2.3 Advantages over port-based state access. Remote access of
block state is superior to state- and EIC-port-based access. Unlike
ports, they do not need to be wired up to their state owners, thereby
avoiding sorting and algebraic loop problems. The Simulink engine
maintains this association instead. Additionally, remote access is
only allowed in explicitly ordered contexts. In a GHA, a Stateflow
chart controls the execution order of various action subsystems,
so that there is a deterministic order between competing access to
the same state. Other permissible uses include explicitly ordered
function-call subsystems.

4 EXAMPLES
4.1 Modeling a pole vault jump
This example is inspired by a blog post about modeling pole vault
jumps using Simulink [16], and is intended to showcase the use of

Fly

InitFlySimulink Function

Take_off

InitTakeOffSimulink Function

Run_up

[Take_off.theta > pi/2]
{InitFly();}

[Run_up.p(1) < 4*cos(30*pi/180)]
{InitTakeOff();}

Figure 6: GHA of a pole vault jump. © The MathWorks, Inc.

arbitrarily different continuous states in different modes and
a new copy-paste workflow.

A pole vault jump has hybrid dynamics with three distinct modes
that model running in, lift off and free fall after release. The original
Type I approach models the three cases in three Action Subsys-
tems. The Run_up and Fly modes model vector-valued double-
integrator dynamics (position (px ,py ) and velocity (vx ,vy )) in the
Cartesian coordinates. The Take_off mode uses polar (r ,θ , Ûr , Ûθ )
coordinates. This is made possible due to the distributed nature
of the dynamics (i.e., individual blocks own their state and up-
date/derivative methods)2.

The detailed dynamics are as presented in [16], which we intend
to reuse. In the GHA formalism, this existing Action Subsystem
from a Simulink canvas can be directly copy-pasted onto a Stateflow
canvas. This automatically generates a Simulink-based state in State-
flow, such as the three shown in the GHA in Fig. 6. Run_up.p(1)
is a vector-valued textual state access.

4.2 Modeling a mode-switching controller
This example is intended to showcase DT dynamics, built-in
timers, and reuse. Consider the air-fuel ratio controller hybrid
automaton from the powertrain control verification benchmark
[14] with startup, power, sensor_fail and normal modes. The
normal mode uses a feedback PI control, while the rest all use a
feedforward P control. The original model uses DT update dynamics
for the states: estimated manifold pressure pe , the integral term i of
the PI controller, and the commanded fuel Fc . Due to the limitations

2In contrast, traditional hybrid automata maintain a single continuous state vector, so
the use of different continuous variables for different mode necessitates constructing
a union state vector and holding inactive states constant, but in process increasing the
dimensionality of the model.
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Figure 7: Pole vault jump xy plot. Three colors depict three
modes. © The MathWorks, Inc.

of hybrid automata to capture DT hybrid dynamics, the model needs
an auxiliary timer variable for periodic self loops to carry out the
DT update. In contrast, Fig. 8 shows the GHA of the controller,
which does not need self loops for DT dynamics: we simply set a
discrete sample time on the chart instead, and use unit delay blocks
rather than integrators to model DT states. Stateflow’s temporal
logic syntax ‘after’ also simplifies the time-dependent transition
out of startup and as such even that timer does not need to be
handled manually. For this controller-only model, we model Fc is
an output. We encapsulate the common P control law into a library
as shown in Fig. 9, and reuse it as library links for modeling the
states startup, sensor_fail, and power.

The controller GHA has the advantage that it contains the exact
same structure as the original HIOA (Fig. 1 from [14]). Yet, it is
also scalable to the real-world complexity using look-up tables,
transport delays, or extended Kalman filters (EKF), which can all be
conveniently used because the syntax supports the full modeling
vocabulary.

4.3 Modeling a cardiac cell
This example is intended to showcase the conciseness of GHA.
Consider a cardiac cell with four modes: resting, stimulated,
upstroke, and plateau, with different continuous dynamics that
determine the membrane voltagev of the cell in each mode [8]. The
Type III model of the cell presented in Fig. 5(a) in [8] uses two State-
flow charts (Event generator and Hybrid set) and a Simulink
subsystem Subsystem3 that model trigger events, state transitions,
and the continuous dynamics respectively. Hybrid set outputs a
discrete variable q representing the mode, the reset voltage value
vreset, and a flag reset that decides whether to reset. Switch
and multi-port switch blocks inside Subsystem3 model the mode
switching based on q, vreset, and reset. All of this complicated
model structure can be greatly simplified into a GHA as shown in
Fig. 10. The GHA model combines the two Stateflow charts and a
subsystem into one chart, as well as eliminates the need for: state
and EIC ports, the initial condition, switch and multiport switch
blocks, and their interconnections. Ultimately we simply get a GHA
with four modes, exactly like original automaton (Fig. 2 in [8]),
without any unecessary additional artifacts.

5 ADVANTAGES OF THE GHA FORMALISM
Improvement over existing approaches. The new GHA formal-
ism overcomes the shortcomings from Sec. 2.3. GHA are intended
to be semantically equivalent to the existing approaches, i.e., the
simulation results match for equivalent dynamics. Elimination of
the need for memory blocks to break algebraic loops (e.g., the
second-order integrator flavor of sldemo_bounce [4]) is an instance
of increase in simulation accuracy, but in general it is the same as
before. Simulation speeds are comparable with those for existing
approaches. ZCs are at least as efficient as before, and can be more
efficient as GHAs evaluate entire transition guards at once and only
when necessary 3.
Generality. The new approach is more general than the different
flavors of hybrid auotmata found in the literature in the following
manners. Given the graphical nature of the formalism, complex
dynamics that include table lookups, filtering, etc., can also be mod-
eled. Such dynamics cannot be modeled using hybrid automata
as they require closed-form differential equations. Secondly, indi-
vidual modes of GHA can have completely different continuous
variables, as exemplified by the pole vault example.
Modularity and Reuse. The new formalism opens up the possibil-
ity of modular development. The continuous dynamics in different
modes can be developed by various teams/vendors, possibly as
libraries. Thanks to remote state access, the overall chart can be
put together without having to edit the individual elements, which
otherwise would have been necessary for exposing state or EIC
ports and manually connecting signal lines or From/Goto blocks
between them. On a similar note, the developer of the continuous
dynamics model does not need to know about the ways in which
the model would be used and therefore need not preemptively add
unnecessary artifacts to account for all possible ways in which it
might be used.

6 DISCUSSION
This tool paper presents a new framework for graphically modeling
hybrid dynamics using Simulink and Stateflow. The new framework
provides a clean separation between discrete and continuous dy-
namics, both of which can be graphically modeled using Stateflow
and Simulink.

The new syntax has the look and feel of hybrid automata while
still making full use of graphical modeling. We hope this can help
bridge the gap between the ease of graphical modeling preferred
by system designers in industry and a clean syntax preferred by
the academic community for their analysis tools that work with
hybrid automata.
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