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ABSTRACT
Today’s complex cyber-physical systems are being built in-
creasingly using model-based development (MBD), where
mathematical models for the system behavior are checked
against design specifications using analysis tools. Different
types of models and analysis tools are used to address dif-
ferent aspects of the system. While the use of heteroge-
neous formalisms supports a divide-and-conquer approach
to complexity and allows engineers with different types of
expertise to work on various aspects of the design, system
integration problems can arise due to the lack of an un-
derlying unifying formalism. In this paper, we introduce
the notion of behavior relations to address the problem of
heterogeneity and propose constraints over parameters as a
mechanism to manage inter-model dependencies and ensure
consistency. In addition, we present structured constructs of
nested conjunctive and disjunctive analyses to enable multi-
model heterogeneous verification. The theoretical concepts
are illustrated using an example of a cooperative intersection
collision avoidance system (CICAS).

Categories and Subject Descriptors
G.4 [Mathematical Software]: Verification; I.6.4 [Simul-
ation and Modeling]: Model Validation and Analysis

Keywords
Heterogeneous Verification, Cyber-Physical Systems, Behav-
ior Relations

1. INTRODUCTION
Model-based development (MBD) refers to the creation

of mathematical models of systems under design and check-
ing those models against design specifications using suit-
able analysis tools. The MBD approach has the ability to
catch errors early in the system design before the system or
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prototypes are built, thereby avoiding costly re-design/re-
development cycles. For all but the most trivial systems,
many types of models need to be created and analyzed. This
introduces the problem of heterogeneity: without a single
comprehensive modeling formalism, how can it be guaran-
teed that the heterogeneous models are consistent with each
other, and how can verification results from the different
formalisms be combined to infer system-level properties? In
this paper, we propose a general framework based on be-
havior relations and constraints over parameters as a formal
basis for the design and verification of complex systems us-
ing multiple heterogeneous models.

Heterogeneity is inherent in cyber-physical systems (CPS)
due to the tight coupling between computation elements,
physical dynamics and communication networks. Typical
heterogeneous aspects of a CPS are its physical dynamics,
control logic, software implementation, real-time execution,
communication networking and so on. For example, con-
sider the cooperative intersection collision avoidance system
for stop-sign assist (CICAS-SSA) [1] illustrated in Fig. 1.
The figure depicts a vehicle called the subject vehicle (SV)
waiting on a minor road to cross through major-road traf-
fic at a stop-sign-controlled intersection. The system aims
to augment human judgment about safe gaps in oncoming
traffic by sensing the speeds and positions of the oncoming
vehicles using cameras, magnetic induction loops or other
sensors, communicating these values to a decision system via
wired or wireless networks and computing safe gaps based on
the physical dynamics of the vehicles and speed limits, im-
plemented either on a dedicated road-side computer or on-
board a smart vehicle. There is no good unified formalism
for modeling all aspects of this complex heterogeneous sys-
tem. And even if there were, verifying the correctness of the
system design using a single model would be an intractable
problem.

MBD of CPS involves creating a collection of different
models using a variety of formalisms that are best suited for
the different aspects of the overall design problem. Common
formalisms used for design and analysis of a CPS include:
acausal equation-based models in tools such as MapleSim
and Modelica, suited for modeling the underlying physics
of a system, e.g., the plant dynamics; signal-flow models in
tools such as Simulink, suitable for control design and simu-
lation; finite state machines and labeled transition systems
in tools such as LTSA, best suited for modeling decision
logic and communication protocols; hybrid-dynamic models
such as hybrid automata in tools such as SpaceEx, useful for



Figure 1: A pictorial sketch of CICAS-SSA. Parameters w, n, h,m, d0 depend on the intersection geometry.

analyzing abstract unified behaviors of continuous dynamics
and discrete mode switches; network simulation models in
tools such as OMNET++, useful for analyzing communica-
tion network properties such as packet loss, communication
delay and so on; and software models in tools such as Spin,
useful for analyzing whether the decision logic is correctly
implemented.
These heterogeneous models are usually created and an-

alyzed by different engineers due to the wide range of ex-
pertise necessary for designing complex systems. In current
practice, methods for maintaining consistency between the
models and composing verification results from the various
models to infer system-level properties are ad hoc at best.
This paper presents a formal basis for addressing these prob-
lems.
The rest of the paper is organized as follows. We begin

with a review of the relevant literature in Sec. 2. In Sec. 3, a
general framework is developed for verification using hetero-
geneous models. Sec. 4 provides conjunctive and disjunctive
constructs to enable heterogeneous verification. Sec. 5 il-
lustrates the concepts using the CICAS-SSA example. Sec.
6 introduces the notion of semantic consistency using con-
straints over parameters and these concepts are illustrated
in Sec. 7. The paper concludes with a discussion and future
work in Sec. 8.

2. RELATED WORK
The idea of using an abstraction in a simpler modeling for-

malism in order to verify safety properties of a more complex
model in the original formalism has been frequently used in
the literature. Hybrid abstractions of nonlinear systems [15,
12], LHA abstractions of linear hybrid systems [13], discrete
abstractions of hybrid systems [4, 11, 3] and continuous ab-
stractions of hybrid systems [2] are some of the examples
where simpler abstractions are successfully created and used.
These approaches use specific pairs of formalisms. Our ob-

jective is to create a general framework for abstraction that
can support any set of heterogeneous formalisms.

Towards the aim of heterogeneous multi-model develop-
ment, several research efforts have focused on supporting
simulation of heterogeneous elements in a common frame-
work. Ptolemy II, for example, supports hierarchical inte-
gration of multiple “models of computation” into a single
simulation model based on an actor-oriented formalism [8].
MILAN [18] is an integrated simulation framework that al-
lows different components of a system to be built using dif-
ferent tools. The Metropolis toolchain [5] supports multiple
analysis tools for design and simulation. However, the focus
of these efforts has been simulation and not verification.

Inference-based approaches that use ontologies have been
proposed for static analysis and type checking [20]. In a
similar spirit, the work in [17] focuses on integrating the re-
sults of disparate verification efforts and analysis techniques
using static and epistemic ontologies. Rather than using an
ontology-based approach, we use a behavioral approach to
compare and relate behaviors of different types.

The work by Julius [16] uses a behavioral approach in
the spirit of Willems’ work [22] and creates a framework
for comparing and interconnecting behaviors based on the
different time axis structures for discrete, continuous and
hybrid behaviors. For embedded software applications, the
Behavior-Interaction-Priority (BIP) framework [9] leverages
the component structure of a system and supports behav-
ioral annotation of the components in the form of state dia-
grams [6] to support system analysis. In contrast to Julius’s
approach of incorporating behaviors in the definition of mod-
els, we see behaviors as the semantic interpretation of sys-
tems, which allows us to observe behaviors in different do-
mains. This idea is similar to the one proposed in [14], where
timed and time-abstract traces serve as different semantics
for the same hybrid automaton. The notion of tagged signal
semantics has been proposed to compare [19] and compose



[7] heterogeneous reactive systems. Unlike [9, 7], the focus
of this work is not to compose heterogeneous components
into one big system, but rather to use heterogeneous models
independently towards a common system-verification goal.
The TLA+ proof system deploys a proof manager that

breaks down a complex verification task logically into proof
obligations that are proved using theorem provers and SMT
solvers [10]. We use a similar approach for logically compos-
ing the results of verification activities, but their framework
based on temporal logic of actions (TLA) is primarily aimed
towards software systems, whereas our framework supports
more general (e.g. continuous, hybrid) dynamics and non-
deductive analysis methods.

3. HETEROGENEOUS VERIFICATION
Our objective is to use models and their specifications to

reason about the underlying system. The first step in ana-
lyzing heterogeneous models and specifications together in
a common framework is to create a mechanism to compare
their associated sets of behaviors. In our previous work, we
dealt with heterogeneity based on the assumption that one
can create semantic mappings from each model and spec-
ification onto one common behavioral domain [21]. Here
create we a framework using behavior relations to support
true semantic heterogeneity by allowing the use of several
different types of behavior formalisms for different models
and specifications.
A behavior formalism B is the set of all possible behaviors

of a particular type. There is no restriction on the type of
behaviors: they could be event traces, continuous trajecto-
ries, hybrid traces, input-output maps or something else.

Definition 1 (Behavior Relation) Given behavior form-
alisms B1 and B2, a behavior relation is a set R ⊆ B1 ×B2

that associates pairs of behaviors from the two sets B1 and
B2.

For a subset of behaviors B′

1 ⊆ B1, let R(B′

1) denote the
set of behaviors in B2 associated with behaviors in B′

1, i.e.,
R(B′

1) = {b2 | ∃b1 ∈ B′

1 s.t. (b1, b2) ∈ R}. Similarly, for
B′

2 ⊆ B2, let R−1(B′

2) represent the set of behaviors in B1

associated with behaviors in B′

2, i.e., R
−1(B′

2) = {b1 | ∃b2 ∈
B′

2 s.t. (b1, b2) ∈ R}.
A specification S is a a logical assertion written in a spec-

ification formalism S. There is no restriction on what speci-
fication formalism can be used. Specifications could be writ-
ten in, for example, various temporal logics, Kripke struc-
tures, automata, sets of unsafe states to be avoided, or even
in English language, so long as their semantic interpretation
is clear in terms of the associated behavioral formalism. The
semantic interpretation of S in a behavior formalism B, de-
noted by JSKB , is defined as the set of all behaviors in B for
which, the specification is satisfied.
When semantically interpreted over the same set of be-

haviors B, a (stronger) specification S2 is said to imply a
(weaker) specification S1, written S2 ⇒B S1 if JS2K

B ⊆
JS1K

B . The following definition extends this notion to het-
erogeneous behavior spaces using behavior relations.

Definition 2 (Heterogeneous Implication) Given beh-
avior formalisms B1, B2 and a behavior relation R ⊆ B1 ×
B2, we say that specification S2 implies specification S1 via
R, written S2 ⇒R S1, if

R
−1(JS2K

B2) ⊆ JS1K
B1 .

This definition requires that if a behavior b1 ∈ B1 is associ-
ated through R with a behavior in b2 ∈ B2 that satisfies S2,
then b1 satisfies S1.

A modeling formalism M is a set of models of a particu-
lar type. Transition systems, hybrid automata, signal-flow
models, acausal equation-based models, and network models
are some of the modeling formalisms used in CPS; however
the discussion is valid for any modeling formalism. A model
M is an element of some formalism M. Given a behavior
formalism B, the semantic interpretation of a model M is
the set of behaviors JMKB ⊆ B that it allows.

When interpreted over the same behavioral formalism B,
a model M2 is an abstraction of a model M1, written M1 ⊑B

M2, if JM1K
B ⊆ JM2K

B . This is the standard definition of
abstraction common among the literature, using, for exam-
ple, language or trace inclusion.

Definition 3 (Heterogeneous Abstraction) Given beh-
avior formalisms B1, B2 and a behavior relation R ⊆ B1 ×
B2, a model M2 is an abstraction of a model M1 through R,
written M1 ⊑R M2, if

JM1K
B1 ⊆ R

−1(JM2K
B2).

This definition asserts that for every behavior in B1 of model
M1, the behavior relation R associates at least one corre-
sponding behavior in B2 of model M2.

In a given behavior formalism B, a model M entails a
specification S, written M |=B S, if JMKB ⊆ JSKB . When
true, this simply asserts that the set of behaviors of the
model M do not violate the set of safe behaviors allowed
by the specification S. To establish this type of entail-
ment, formal approaches such as reachability analysis and
theorem proving, or semi-formal approaches like systematic
state-space exploration, need to be used whenever possible.
We do not restrict what method the system designer chooses
to use to establish entailment.

Proposition 1 Given behavior formalisms B1 and B2, mo-
dels M1 and M2, specifications S1 and S2, and a behavior
relation R ⊆ B1 × B2, if M1 ⊑R M2, M2 |=B2 S2 and
S2 ⇒R S1, then M1 |=B1 S1.

Proof. From M1 ⊑R M2, we have

JM1K
B1 ⊆ R

−1(JM2K
B2)

(From M2 |=B2 S2) ⊆ R
−1(JS2K

B2)

(From S2 ⇒R
S1) ⊆ JS1K

B1 .

Therefore, M1 |=B1 S1.

This proposition gives us the conditions under which a
heterogeneous abstraction of a complex model can be used
to verify a property of the underlying system. In the fol-
lowing section, we further develop this idea to use several
abstractions to verify properties of a given system.

4. MULTI-MODEL HETEROGENEITY
There are two natural ways of using multiple models and

specifications. In one, models individually are abstractions
of the underlying system and the conjunction of their associ-
ated specifications needs to imply the system specification.
Alternatively, each model may represent only a subset of
the behaviors of the underlying system, and the collection
of models provides an abstraction of the complete system.



In this second case, the specification for each model needs to
imply the specification of interest for the underlying system
for the set of behaviors covered by the model. The following
develops these two notions in the context of heterogeneous
verification.
We first consider the case where each model is a heteroge-

neous abstraction of the underlying system. In this case, we
need to ensure that the specifications checked against each
model together imply the specification of the underlying sys-
tem. The following definition makes this notion formal.

Definition 4 (Conjunctive Heterogeneous Implication)

Given a system behavior formalism B0, behavior formalisms
Bi and behavior relations Ri ⊆ B0×Bi, i = 1, . . . , n, specifi-
cations Si, i = 1, . . . , n conjunctively imply the system spec-
ification S0 if

⋂

i

R
−1
i (JSiK

Bi) ⊆ JS0K
B0 .

This definition allows the individual specifications Si to not
imply S0, but their conjunction (intersection of the allowed
behaviors) is required to be stronger than S0.

Proposition 2 (Heterogeneous Conjunctive Analysis)

For a system model M0 with a behavioral formalism B0 and
specification S0, given models Mi with the corresponding be-
havior formalisms Bi, specifications Si and behavior rela-
tions Ri ⊆ B0 × Bi, if M0 ⊑Ri Mi, specifications Si con-
junctively imply S0, and Mi |=

Bi Si for each i = 1, . . . , n,
then M0 |=B0 S0.

Proof. From M0 ⊑Ri Mi for each i, we have

JM0K
B0 ⊆

⋂

i

R
−1
i (JMiK

Bi)

(since Mi |=
Bi Si) ⊆

⋂

i

R
−1
i (JSiK

Bi)

(Conj. Het. Implication) ⊆ JS0K
B0 .

Therefore, M0 |=B0 S0.

Now we consider the case where different models are built
to represent different subsets of behaviors of a system. This
is typically useful when there are different behaviors in dif-
ferent operating regimes best modeled by different models,
where neither one fully represents the whole set of behav-
iors of the system, but their union does. This notion is made
formal by the following definition.

Definition 5 (Model Coverage) For a system model M0

with a behavioral formalism B0, given a set of models Mi

with corresponding behavior formalisms Bi and behavior re-
lations Ri ⊆ B0 × Bi, models Mi, i = 1, . . . , n cover M0

if there exists a partition {B1
0 , B

2
0 , . . . , B

n
0 } of JM0K

B0 s.t.
∀i = 1, 2, . . . , n

B
i
0 ⊆ R

−1
i (JMiK

Bi).

This definition requires that every behavior of the underly-
ing system M0 to be accounted for by at least one model.

Lemma 1 If models Mi cover M0 through Ri, i = 1, . . . , n,
we have

JM0K
B0 ⊆

n
⋃

i=1

R
−1
i (JMiK

Bi).

Figure 2: A simple variant of the CICAS-SSA with
one near-side oncoming lane with one POV. Road
coordinates X, Y and Z are along the POV path,
SV path going straight and SV turning right respec-
tively. Conflict areas along the paths shown using
bold line segments.

Proof. From the definition of partition, we have

JM0K
B0 =

n
⋃

i=1

B
i
0

(Def. 5) ⊆
n
⋃

i=1

R
−1
i (JMiK

Bi).

In this case, since each model is not an abstraction of the
underlying system, to imply a specification for the underly-
ing system it is necessary that we verify specifications that
are at least as strong as the system specification, as stated
in the following proposition.

Proposition 3 (Heterogeneous Disjunctive Analysis)
For a system model M0 with a behavioral formalism B0 and
specification S0, given models Mi with the corresponding be-
havior formalisms Bi, specifications Si and behavior rela-
tions Ri ⊆ B0 ×Bi, if each specification Si heterogeneously
implies S0, models Mi cover M0, and Mi |=

Bi Si for each
i = 1, . . . , n, then M0 |=B0 S0.

Proof. From the definition of model coverage, we have

JM0K
B0 ⊆

⋃

i

R
−1
i (JMiK

Bi)

(since Mi |=
Bi Si) ⊆

⋃

i

R
−1
i (JSiK

Bi)

(Het. Implication) ⊆ JS0K
B0 .

Therefore, M0 |=B0 S0.

Finally, we note that the conjunctive and disjunctive anal-
ysis constructs can be nested arbitrarily. For example, the
jth conjunctive verification subtask Mj |=Bj Sj can be bro-
ken down disjunctively into its subtasks Mji |=Bji Sji by
creating new models that cover Mj and specifications that
imply Sj . Thus, using the nesting of conjunctive and dis-
junctive constructs, any arbitrary logical breakdown of a
system verification task can be achieved. This is illustrated
in an example in the following section.

5. EXAMPLE
Consider a simple variant of the CICAS-SSA as shown

in Fig. 2, with a single major-road lane and one oncoming
principal other vehicle (POV). The subject vehicle (SV) can
either go straight or turn right to merge into POV’s path.
The SV is able to sense the position of the POV, and the
decision of whether to start driving or not is made on-board



Figure 3: A single universal model M0 for the simple SSA system.

the SV using this sensed position of the POV. The road co-
ordinates along the path of the POV and along the straight
and right-turn paths of the SV are assumed to be along di-
mensions X, Y and Z respectively. The conflict areas where
crashes can occur (depending on the intersection geometry)
are either x ∈ [0, f = 3] and y ∈ (0, h = 4.5) or x ∈ [0, g]
and z ∈ (0, j), where f and h depend on the intersection
geometry, and g and j are chosen large enough (here, 170m)
such that the SV has a chance to accelerate to the highway
speed so that after the turn there is no (intersection-related)
collision.
Fig. 3 shows a model of the system made up of two hybrid

automata components SV and POV. The decision strategy
implemented on-board the SV is that if the POV hasn’t
crossed an imaginary marker at position l = −300 along the
X axis, the SV is permitted to start driving, but it doesn’t
have to. When POV crosses l, the SV has to stay stopped,
forced by the invariant in deciding. Whenever permitted,
whether the SV decides to go straight or turn right is rep-
resented as a nondeterministic choice; however once it has
committed to one, it isn’t allowed to change its mind. The
evolution stops when the SV clears the conflict regions or
when the POV enters the intersection. By the time the
POV enters the intersection, if the SV is still in the conflict
zone, there is a safety violation (a potential collision). Al-
ternatively, if the SV has cleared the conflict zone or hasn’t
entered it, there is no safety violation. The objective is to
guarantee collision freedom for this particular strategy. The
collision-freedom specification S0 can be defined by the tem-
poral logic formula S0 : 2 ¬ ((x == 0∧0 < y < 4.5)∨(x ==
0 ∧ 0 < z < 170)).

5.1 Disjunctive analysis
We first disjunctively break down the problem into two

subproblems. We create two models, one for the case where

SV is only allowed to go straight and the other where the
SV is only allowed to go right, as shown in Fig. 4 and 5.
The behavior domain of M0 (i.e., B0) is the set of all five
dimensional hybrid traces, while B1 and B2 are each sets of
all three dimensional hybrid traces. The behavior relations
for this breakdown are as follows:

• R1 : {(b0, b1)|b0 ↓z,vz== 0̄ and b0 ↓x,y,vy== b1}

• R2 : {(b0, b2)|b0 ↓y,vy== 0̄ and b0 ↓x,z,vz== b2}

where 0̄ represents a 2-d trace of zeros over all time and ↓()
represents the projection on ().

The specifications to be checked for the two models are

• S1 : 2 ¬ (x == 0 ∧ 0 < y < 4.5) and

• S2 : 2 ¬ (x == 0 ∧ 0 < z < 170).

We have heterogeneous implication S1 ⇒R1 S0 becauseR
−1
1 (

JS1K
B1) forces that y be conflict-free and z be 0, which im-

plies that y is conflict-free and z is conflict-free. Similarly,
we have S2 ⇒R2 S0. Further, we note that in every behav-
ior of M0, either {y, vy} or {z, vz} are zero and both the
possibilities are covered by either model. Therefore, from
Prop. 3, if M1 |=B1 S1 and M2 |=B2 S2, we can conclude
M0 |=B0 S0. Out of these two verification sub-tasks, we
show how M1 |=B1 S1 can be proved using conjunctive anal-
ysis in the next subsection. M2 |=B2 S2 can be shown in a
similar manner.

5.2 Conjunctive analysis
Consider the subtask of showing M1 |=B1 S1. We break

down this task conjunctively by creating three models M1i

and constructing corresponding specifications S1i, i = 1, 2, 3,
as shown in Fig. 5. M11 models the behaviors of the POV,
and is exactly the same as the POV automaton in M1. M12



Figure 4: A model M2 for SV only going right.

models the behavior of the SV only while it is in the conflict
zone and has the same dynamics as that of the conflict_y

location of M1. M13 is a discrete model consisting of two
elements. The component POV is a created by partitioning
the component POV of M1 into discrete states far,close,
and inInt using predicates x ≤ −300, −300 ≤ x ≤ 0, and
0 ≤ x. The second component SV is merely a discrete con-
trol graph of the hybrid automaton model for SV inM1. The

only synchronized pair of transitions is (far
σ1→close) and

(deciding
σ1→stopped). Non-blocking self loops have been

dropped from the pictorial representation for simplicity.
The behavior relations are

• R11 : {(b1, b11)|b11 == b1 ↓x },

• R12 : {(b1, b12)|b12 == s1 ↓y,vy where s1 is b1 re-
stricted to the discrete location (driving,conflict_y)}
and

• R13 : {(b1, b13)|b1 is a hybrid trajectory that visits the
discrete locations corresponding to ones in b13 in that
order }.

For these behavior relations, we first note that M1 ⊑R1i

M1i because neither of the models M1i is more restrictive
than M1. The specifications for the three models are

• S11 : 2 (x == −300 ⇒ 29 x < 0),

• S12 : 2 (38 y ≥ h) and

• S13 : 2 ((φ1 ∧ ¬φ2) → ¬(3φ2)), where φ1 is the pred-
icate “POV is close” satisfied in states (close,·) and
(inInt,·); and φ2 is the predicate “SV is driving” sat-
isfied in states (·,con_y).

The behaviors effectively allowed in B1 by the specifications
S1i are as follows:

• R−1
11 (JS11K): system behaviors where POV takes at

least 9 seconds to get from l = −300 to the inter-
section.

• R−1
12 (JS12K): system behaviors where SV clears the in-

tersection within 8 seconds of starting to drive.

• R−1
13 (JS13K): system behaviors where SV does not start

driving after POV crosses l.

There can only be two cases:

1. The SV has already started driving before the POV
crosses l and is in the intersection: in this case, from
R−1

11 (JS11K) and R−1
12 (JS12K) together, it will clear the

intersection in at most 8 seconds and the POV won’t
get to the intersection in at least 9 seconds, OR

2. The SV hasn’t started driving when the POV crosses
l: in this case, from R−1

13 (JS13K), the SV cannot start
driving anymore.

Therefore, from all the specifications put together, the two
cars can’t be in the intersection at the same time, which
implies S1, i.e., we have conjunctive heterogeneous implica-
tion.

M11 |=B11 S11 can be shown by algebraic computations:
for the fastest velocity (30m/s) it takes 10s to travel 300m.
M12 |=B12 S12 can be shown by Newton’s laws of motion:
the longest time needed to cross 4.5m with initial velocity

0 and minimum acceleration 0.25m/s2 is
√

2∗4.5
0.25

= 6 sec-

onds. M13 |=B13 S13 can be shown by using Labeled Transi-
tion System Analyzer (LTSA). Under these conditions, using
Prop. 2, we can infer that M1 |=B1 S1.

6. HETEROGENEOUS CONSISTENCY
The framework developed in Sec. 4 treats the model ab-

straction and model coverage in terms of the entire sets of
behaviors. At that level, the interdependencies between in-
dividual behaviors of the models are lost. In our earlier work
[21], we introduced the use of constraints over parameters as
a mechanism to capture interdependencies between models
and to ensure consistency. Here, we redevelop a consistency
framework based on constraints over parameters for our new
approach using behavior relations introduced in Sec. 3 and
4 and extend the idea to also capture interdependencies be-
tween specifications.

A parameter p of a system is a real-valued static variable
that affects the system behavior. The valuation of a set of



Figure 5: Heterogeneous conjunctive analysis of a model M1 for SV going only straight.

parameters P is a function v : P → R that associates each
parameter with a value. V (P ) denotes the set of all possible
valuations of the parameters in P .
A constraint C(P ) over a set of parameters P is an expres-

sion written in a constraint formalism C, such as first-order
logic of real arithmetic. For a given v ∈ V (P ), JC(P )Kv ∈
{⊤,⊥} denotes the evaluation of the constraint C(P ) at v,
and JC(P )K denotes the set of all valuations v of P for which
JC(P )Kv = ⊤.
Conjunction of constraints C1(P ) and C2(P ), written

C1(P ) ∧ C2(P ), is also a constraint whose corresponding
parameter valuations are the intersection of the parameter
valuations of the original constraints, i.e., JC1(P )∧C2(P )K =
JC1(P )K ∩ JC2(P )K. Similarly, disjunction of constraints is
a constraint whose corresponding parameter valuations are
the union of the parameter valuations of the original con-
straints. We write C′(P ) ⇒ C(P ) when JC′(P )K ⊆ JC(P )K.
Given two sets of parameters P and P ′, the projection

of a constraint C(P ) onto P ′, written as C(P ) ↓P ′ , is the
constraint over P ′ defined by existential quantification of
the parameters in P \ P ′. Its valuations JC(P ) ↓P ′K are

{v′ ∈ V (P ′) | ∃v ∈ JC(P )K : v′(p′) = v(p′) ∀p′ ∈ P
′ ∩ P}.

We now consider that a set of parameters Pi is introduced
for every ith analysis task. Parameters PM

i ⊆ Pi are asso-
ciated with the models Mi and parameters PS

i ⊆ Pi are
associated with the specifications Si. Constraints CM

i and
CS

i determine the values of the parameters in PM
i and PS

i

for models Mi and specifications Si, respectively. The se-
mantic interpretation of a parameterized model Mi with a
constraint CM

i , written JCM
i ,MiK

Bi , is the set of all pos-
sible behaviors in Bi associated with the model Mi for all
parameter valuations in JCM

i (PM
i )K. Similarly, the semantic

interpretation of a parameterized specification JCS
i , SiK

Bi is
the set of all behaviors in Bi that are permitted by Si for
the values of parameters PS

i determined by the constraint
CS

i . The parametric entailment CM
i ,Mi |=Bi CS

i , Si needs
to establish that JCM

i ,MiK
Bi ⊆ JCS

i , SiK
Bi .

We observe that the set of possible behaviors of a given
model grows or shrinks monotonically with increasing or de-
creasing sets of parameter valuations, i.e., if C′ ⇒ C, then
JC′,MKB ⊆ JC,MKB for any model M . We assume that the
specifications are parameterized such that increasing sets of
parameter valuations allow increasing sets of behaviors, i.e.,
if C′ ⇒ C, then JC′, SKB ⊆ JC, SKB for any specification S.

We let the constraint Caux(P ) denote the auxiliary con-
straints that capture the dependencies across the set of all
parameters P =

⋃n

j=0 Pj , which is the set of all parame-
ters being used, including the original system-level parame-
ters P0. Without loss of generality we assume the sets Pj ,
j = 0, 1, . . . , n are disjoint.

Definition 6 We say that an auxiliary constraint Caux is
non-conflicting for a given system-level constraint C0 if

(C0 ∧ Caux) ↓P0
= C0.

Definition 7 (Parametric Abstraction) Given a para-
meterized model M0 with a behavioral domain B0, a param-
eterized model Mi with a corresponding behavior formalism
Bi and a behavior relation Ri ⊆ B0 × Bi, Mi is said to
be a parametric abstraction of M0 under an auxiliary con-
straint Caux if for any constraint CM

0 such that Caux is non-
conflicting for CM

0 , we have

JCM
0 ,M0K

B0 ⊆ R
−1
i (J(Caux ∧ C

M
0 ) ↓PM

i
,MiK

Bi).



The following definition creates a notion of coverage for pa-
rameterized models given their parameter dependencies.

Definition 8 (Parametric Coverage) For a parameter-
ized system model M0 with a corresponding behavior formal-
ism B0, a given set of parameterized models Mi with cor-
responding behavior formalisms Bi and behavior relations
Ri ⊆ B0 ×Bi, i = 1, . . . , n form a parametric cover for M0

under an auxiliary constraint Caux if for any constraint CM
0

such that Caux is non-conflicting for CM
0 , there exists a par-

tition {B1
0 , B

2
0 , . . . , B

n
0 } of JCM

0 ,M0K
B0 s.t. ∀i = 1, 2, . . . , n

B
i
0 ⊆ R

−1
i (J(Caux ∧ C

M
0 ) ↓PM

i
,MiK

Bi).

Now we develop analogous definitions for parameterized
specifications.

Definition 9 (Parametric Implication) For a parame-
terized system specification S0 with a corresponding behav-
ioral formalism B0, a parameterized specification Si with a
corresponding behavior formalism Bi and a behavior relation
Ri ⊆ B0 × Bi is said to parametrically imply S0 under an
auxiliary constraint Caux if for any constraint CS

0 such that
Caux is non-conflicting for CS

0 , we have

R
−1
i (J(Caux ∧ C

S
0 ) ↓PS

i
, SiK

Bi) ⊆ JCS
0 , S0K

B0 .

Definition 10 (Conjunctive Parametric Implication)
For a parameterized system specification S0 with a corre-
sponding behavioral formalism B0, a given set of parameter-
ized specifications Si with corresponding behavior formalisms
Bi and behavior relations Ri ⊆ B0 × Bi, Si, i = 1, . . . , n
conjunctively paremetrically imply S0 under an auxiliary
constraint Caux if for any constraint CS

0 such that Caux is
non-conflicting for CS

0 , we have
⋂

i

R
−1
i (J(Caux ∧ C

S
0 ) ↓PS

i
, SiK

Bi) ⊆ JCS
0 , S0K

B0 .

Definition 11 The pair of constraints (CM
i , CS

i ) for i
th an-

alysis task is said to be original-constraint consistent if

(CM
0 ∧ Caux) ↓PM

i
⇒ C

M
i and C

S
i ⇒ (CS

0 ∧ Caux) ↓PS
i

.

Given these definitions, the following two propositions
give sufficient conditions for parametric conjunctive and dis-
junctive analysis.

Proposition 4 Given parameterized system model M0 and
specification S0 with corresponding behavior formalism B0

and the pair of constraints (CM
0 , CS

0 ) over the system-level
parameters PM

0 and PS
0 , a set of parameterized models Mi

and specifications Si with corresponding behavior formalisms
Bi, behavior relations Ri ⊆ B0×Bi and pairs of constraints
(CM

i , CS
i ) over parameters PM

i and PS
i for i = 1, . . . , n, if

i. constraints (CM
i , CS

i ) are original-constraint consistent,

ii. each model Mi is a parametric abstraction of M0,

iii. specifications Si conjunctively parametrically imply S0,
and

iv. CM
i ,Mi |=

Bi CS
i , Si

then CM
0 ,M0 |=B0 CS

0 , S0.

Proof. From the definition of parametric abstraction, we
have

JCM
0 ,M0K

B0 =
⋂

i

R
−1
i (J(Caux ∧ CM

0 ) ↓
PM
i

,MiK
Bi )

(Def. 11) ⊆
⋂

i

R
−1
i (JCM

i ,MiK
Bi)

(CM
i ,Mi |=

Bi CS
i , Si) ⊆

⋂

i

R
−1
i (JCS

i , SiK
Bi)

(Def. 11) ⊆
⋂

i

R
−1
i (J(Caux ∧ CS

0 ) ↓PS
i
, SiK

Bi)

(Def. 10) ⊆ JCS
0 , S0K

B0

Therefore, CM
0 ,M0 |=B0 CS

0 , S0.

Proposition 5 Given parameterized system model M0 and
specification S0 with a behavior formalism B0 and the pair of
constraints (CM

0 , CS
0 ) over the system-level parameters PM

0

and PS
0 , a set of parameterized models Mi and specifications

Si with corresponding behavior formalisms Bi, behavior re-
lations Ri ⊆ B0×Bi and pairs of constraints (CM

i , CS
i ) over

parameters PM
i and PS

i for i = 1, . . . , n, if

i. constraints (CM
i , CS

i ) are original-constraint consistent,

ii. models Mi form a parametric cover for M0,

iii. specifications Si each parametrically imply S0 and

iv. Ci,Mi |=
Bi CS

i , Si

then CM
0 ,M0 |=B0 CS

0 , S0.

Proof. From the definition of parametric coverage, there
exists a partition {B1

0 , . . . , B
n
0 } of JCM

0 ,M0K
B0 s.t.

JCM
0 ,M0K

B0 ⊆
⋃

i

R−1
i (J(Caux ∧ CM

0 ) ↓
PM
i

,MiK
Bi )

(Def. 11) ⊆
⋃

i

R
−1
i (JCM

i ,MiK
Bi)

(CM
i ,Mi |=

Bi CS
i , Si) ⊆

⋃

i

R
−1
i (JCS

i , SiK
Bi)

(Def. 11) ⊆
⋃

i

R−1
i (J(Caux ∧ CS

0 ) ↓
PS
i
, SiK

Bi )

(Def. 9) ⊆ JCS
0 , S0K

B0

Therefore, CM
0 ,M0 |=B0 CS

0 , S0.

7. EXAMPLE WITH PARAMETERS
To illustrate the use of parametrized models and specifi-

cations, we return to the conjunctive analysis example from
Sec. 5. The bounds on the POV velocity, the bounds on
the SV acceleration, the position of the marker l and the
lane width of the major road h are represented as param-
eters as shown in Fig. 6. These parameters embedded in
the unparameterized models are now explicitly identified as
follows.

• PM
1 : {M1.vx,M1.vx,M1.l,M1.h,M1.ay,M1.ay},

• PS
1 : {M1.h},

• PM
11 : {M11.vx,M11.vx,M11.l},

• PS
11 : {M11.l,M11.tx},



Figure 6: Parametric heterogeneous analysis of CICAS-SSA.

• PM
12 : {M12.h,M12.ay,M12.ay},

• PS
12 : {M12.h,M12.ty},

• PM
13 : {},

• PS
13 : {}.

The following constraints identify the ranges of these pa-
rameters.

• CM
1 : 20 ≤ M1.vx ≤ M1.vx ≤ 30 ∧ M1.l == −300 ∧

M1.h == 4.5 ∧ 0.25 ≤ M12.ay ≤ M12.ay ≤ 5

• CS
1 : M1.h == 4.5

• CM
11 : 18 ≤ M11.vx ≤ M11.vx ≤ 32 ∧M11.l == −300

• CS
11 : M11.l == −300 ∧ 9 ≤ M11.tx ≤ 10

• CM
12 : M12.h == 4.5 ∧ 0.2 ≤ M12.ay ≤ M12.ay ≤ 5.2

• CS
12 : M12.h == 4.5 ∧ 7 ≤ M12.ty ≤ 8

Now, we know that the time needed for the POV to get
from l to 0 needs to be bigger than the time needed for
the SV to start accelerating from a stationary position and
clear the intersection (i.e., ty < tx). From Newton’s laws

of motion, we note that
√

2h
ay

≤ ty and tx ≤ −l
vx

. We add

this to Caux along with the equality constraints between the
parameters that are identical between M1is and M1:

Caux : (M1.vx == M11.vx) ∧ . . . ∧ (M1.ay == M12.ay) ∧

(
√

2h
ay

≤ ty < tx ≤ −l
vx

)

We have a parametric abstraction for each model because
due to the equality constraints in Caux, we get equal pa-
rameter valuations for the corresponding models, and under
the same parameter valuations, M1i are not more restrictive

than M1. Note that we have parametric conjunctive spec-
ification implication so long as ty < tx holds, and here it
does.

CM
11 ,M11 |=B11 CS

11, S11 and CM
12 ,M12 |=B12 CM

12 , S12 can

be shown using Newton’s laws so long as
√

2h
ay

≤ ty and

tx ≤ −l
vx

hold, which they do. CM
13 ,M13 |=B13 CM

13 , S13 still
holds since it hasn’t changed.

Finally, we get the following projections of CM
1 and CS

1

on PM
1i and PS

1i through Caux:

• (CM
1 ∧ Caux) ↓PM

11

: 20 ≤ M11.vx ≤ M11.vx ≤ 30 ∧

M11.l == −300 ∧M11.vx < 33.33

• (CS
1 ∧ Caux) ↓PS

11

: ⊤

• (CM
1 ∧ Caux) ↓PM

12

: 0.25 ≤ M12.ay ≤ M12.ay ≤ 5 ∧

M12.h == 4.5 ∧M12.ay > 0.19

• (CS
1 ∧ Caux) ↓PS

12

: M12.h == 4.5

We have (CM
1 ∧ Caux) ↓PM

11

⇒ CM
11 , C

S
11 ⇒ (CS

1 ∧ Caux) ↓PS
11

;

and (CM
1 ∧ Caux) ↓PM

12

⇒ CM
12 , C

S
12 ⇒ (CS

1 ∧Caux) ↓PS
12

. Now

we can use Prop. 4 to turn this into a parametric conjunctive
analysis and conclude that CM

1 ,M1 |=B1 CS
1 , S1.

In this parameterized example, because we are able to
capture the parameter dependencies, we now know how fast
the SV needs to accelerate given ranges of vx, h and l.
Alternatively, if the system is implemented as a road-side
infrastructure-based solution, where ay cannot be chosen
but is known empirically from driver behavior data, we know
how l should be chosen. While the heterogeneous verifica-
tion of the unparameterized example succeeds, there is no
support for capturing these interdependencies. Therefore,



there is value added in exposing parameters and identifying
interdependencies.

8. DISCUSSION
This paper addresses the use of heterogeneous models for

verifying system-level properties of cyber-physical systems.
Behavior relations are introduced to relate the different se-
mantic frameworks used to model different aspects of the
system. Structured nesting of verification activities using
Boolean combinations of conjunctive and disjunctive con-
structs is introduced to make it possible to infer system-level
properties from the properties of heterogeneous models. The
notion of semantic consistency critical for inferring system-
level properties from model-level analyses is also introduced
based on constraints over parameters.
The application of the proposed approach to real-scale

problems will require tool support for managing various be-
havior relations, parameters, constraints and sufficient con-
ditions for conjunctive and disjunctive analysis constructs.
We are currently working on creating this verification man-
agement tool support. Future work will focus on integrating
structural connectivity information available from architec-
tural modeling of CPS with the semantic information regard-
ing behavior relations and parameter constraints. Another
direction is to support dynamic interdependencies between
models by using temporal or dynamic logic constraints.
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