
Research Project Report −17-755∗

Akshay Rajhans

Spring 2009

∗This report documents a research project done for the course 17-755, “Architectures for
Software Systems” offered during the Spring semester of 2009 at Carnegie Mellon University.

1

Contents

1 Introduction 4

2 Architectures for cyber-physical systems 4

3 Cyber-physical family 5
3.1 Cyber family . 5
3.2 Physical family . 6
3.3 Cyber-physical interface family 7

4 The need for LHA annotations 7

5 LHA mix-in family 8

6 LHA plug-in 9

7 Example 10

8 Conclusion 18

9 Appendix 18

2

Abstract

This project report presents the Linear Hybrid Automata (LHA) plug-in for
AcmeStudio developed as a part of the research project for the Software Ar-
chitecture course offered during the Spring 2009 semester at Carnegie Mellon
University.

As a part of our research effort, we have developed an extension of existing
software architecture tools to model physical systems, their interconnections,
and the interactions between physical and cyber components. To support the
principled design and evaluation of alternative architectures for cyber-physical
systems (CPSs), a new CPS architectural style is introduced. Moreover, to per-
form behavioral analysis on the CPS architectures built using this CPS style, we
have developed the capability to annotate the architectures with finite state pro-
cesses (FSP) or linear hybrid automata (LHA) codes. To facilitate easy editing
of FSP and LHA behavioral information codes and to automatically generate
analysis codes for Labeled Transition System Analyzer (LTSA) or Polyhedral
Hybrid Automata Verifier (PHAVer), respectively, we have developed FSP and
LHA plug-ins for AcmeStudio. This report presents the LHA plug-in.

3

1 Introduction

Today’s models and methods for analysis and design of cyber-physical systems
(CPSs) are typically fragmented along lines defined by disparate mathemati-
cal formalisms and dissimilar methodologies in engineering and computer sci-
ence. While separation of concerns is needed for tractability, such analytical
approaches often impose an early separation between the cyber and physical
features of the system design, making it difficult to assess the impacts and
tradeoffs of alternatives that cut across the boundaries between these domains.

As a part of the research effort towards this course, we developed extensions to
software architectural descriptions to encompass the full range of elements that
comprise cyber-physical systems. Architecture description languages (ADLs)
support the description of annotated structural representations that facilitate
the evaluation of design tradeoffs in terms of important qualities such as perfor-
mance, reliability, security, and maintainability. It is possible to customize an
ADL to a particular domain by defining an architectural style, which describes
a vocabulary of structural types, a set of properties and composition rules, and
associated analyses to enable such tradeoffs.

Our goal is to create an extensible framework within which a comprehensive
set of design tools can be created for CPSs. As first steps in this direction, we
have developed a new CPS architectural style, the behavioral annotations for
the components and connectors from the style and plug-ins for verification of
properties of CPSs based on verification methods for systems with discrete and
continuous state variables (hybrid systems).

2 Architectures for cyber-physical systems

Although architectural modeling has been used in specific domains (e.g., avion-
ics) to incorporate physical elements as components, there is currently no ade-
quate way of treating cyber and physical elements equally in a general fashion.
This is because currently there is an impoverished vocabulary for the types of
physical components found in CPSs, the interconnections that determine the in-
teractions between those components, as well as the interactions between cyber
components and physical entities. This section presents extensions that allow
both physical and cyber elements to be modeled together as cyber-physical ar-
chitectures.

We introduce the architectural primitives as the basic building blocks that
define the modeling vocabulary for cyber-physical systems. We use the Acme
ADL [GMW00] to define these architectural primitives because it has strong
support for defining flexible architectural styles, or families. In Acme, an ar-
chitectural style is represented as a family of element types that follow certain
rules and structure in terms of what kind of components and connectors can be

4

present in the system, and the manner in which they can be connected with each
other. This primitive family can be refined into an application-specific family
by adding additional elements and rules based on these primitives [DRRS99].

3 Cyber-physical family

Our approach to providing an architectural family for cyber-physical systems is
to define an architectural family for the cyber domain and the physical domain,
respectively, and then define a bridging family that combines these two families
into a cyber-physical family. Thus, in Acme, the cyber-physical interface family
inherits its elements and rules from two core families, namely, cyber family
and physical family. The cyber family has computational elements such as
computers, microcontrollers, and the computational side of intelligent devices
such as smart sensors and actuators. The physical family has elements that
model the physical environment with which the cyber elements interact. In
addition to inheriting the elements of cyber family and physical family, the
cyber-physical family also has elements that bridge the boundaries of cyber and
physical domain, such as transducers. Taking this approach of using multiple
inter-related families allows for the architecture of the cyber aspect and the
physical aspect of a system to be modeled separately, if desired, but combined
in a principle way using the bridging family.

Each family specifies the allowed set of components, connectors, ports on
components that facilitate interfacing of connectors, and the roles played by the
components on different ends of connectors. We define component, connector,
role and port types, collectively called element types. The families serve as
patterns that any system architecture satisfies automatically by including the
families in the architecture. In the process, the element types are made available
to the modeler as a part of the families. New elements of the system are instan-
tiation of one of these element types. These instantiations of the element types
into elements can be thought of as the instantiations of classes into their objects
in object-oriented terms. The following sections describe the cyber family, the
physical family and the cyber-physical family in detail.

3.1 Cyber family

The challenge in defining an architectural style is to find a balance between
specificity and generality. In the CPS domain, the vast majority of software
will follow a control software model, and so the cyber family defines a style
motivated by these application domains.

Cyber component types

Controller and estimator component types Controller and estimators fol-
low the notion of control and estimation that stems from control theory.

5

Controllers read the system state and take action by issuing commands.
Estimators inspect available information, such as the sensor readings, and
based on their possibly partial knowledge of the system update the system
states.

State-variable component type We introduce a separate component type
to represent the entity in the software that stores and maintains the state
variables. This primarily stems from the maintainability requirements of
large-scale systems. In simple systems, these could be just passive memory
blocks, and in complex systems there could be further details specifying
which entity can update a particular state variable, who can read it and
so on.

Sensor and actuator software component types Since most of the cyber-
physical systems will have sensing and actuation as a means of inter-
communication between cyber and physical domains, we represent their
software equivalents in the cyber family. Sensor software is the compu-
tational component built on top of sensors that processes sensor readings
and makes them available to other computational elements like an esti-
mator. Actuators software converts commands from controllers into an
actuating signals in the physical realm.

Cyber connector types In addition to the computational aspects of the
software, it is important to represent the communication aspects. This will
be important for representing and reasoning about timing between software
elements and how this affects the physical aspects of the system. For now, con-
nectors can specify the interaction modes between components, and can be used
to check for well formed architectures. We represent two major types of software
connectors, a call-return connector representing one-to-one communication and
a publish-subscribe connector representing one-to-many. Each of these types
can be further specialized to represent particular communication protocols.

3.2 Physical family

Unlike the cyber family, where we build the element types based on the existing
knowledge about the possible element types in software architectures, building
of the physical family is a fresh start. The challenge here is to determine what
the fundamental building blocks of physical systems would be. As a start, we
have defined one generic component type to model any physical system and two
generic connector types to model directed and undirected interaction. These
are further explained below.

Physical component types

Hybrid dynamic system type We define one generic type which is the hy-
brid dynamic system type. The rationale behind defining just this one
component type is that any physical system with continuous dynamics

6

and possible discontinuities can be generically termed as a hybrid dy-
namic system. Currently, it is left up to the modeler to further refine it
into application-specific component types if deemed necessary

Physical connector types The connectors in the physical domain model
the couplings between the dynamics of individual subsystems. There could be
directed or undirected couplings between the dynamics of two physical systems.
The two connector types to capture these connections are defined as follows.

Input-output connector type This is the connector type models directional
coupling between physical components. This is the type of connection
normally used in control-oriented models of physical systems, such as the
block diagram paradigm used in the Simulink tool from The MathWorks.

Shared-variable connector type This connector type models the undirected
(or bidirectional) interaction of coupled dynamics. This is the type of
component interactions used in physical modeling tools such as Modelica.

3.3 Cyber-physical interface family

The cyber-physical interface family uses all the types from the cyber family and
the physical family. It adds component and connector types that bridge the gap
between software and physical systems. To model the interactions between the
cyber and the physical worlds, we introduce two directed connector types, P2C
(physical-to-cyber) and C2P (cyber-to-physical) connector types are defined.
Simple sensors can be modeled as the P2C connectors and simple actuators can
be modeled as the C2P connectors.

For more complex interfaces between cyber and physical elements in a CPS,
we define the transducer component type, which has ports to cyber elements
one side and ports to physical elements on the other side. Devices are modeled
as transducer components if they do more than a simple translation between
cyber and physical domains, e.g., intelligent sensor nodes. If the devices do
just a simple translation between the cyber and the physical domains, they are
rather modeled as connectors.

4 The need for LHA annotations

The architectural elements introduced above describe only the structural infor-
mation about a system, such as the kinds of elements present in the system
and the nature of their interconnections. This structural description lacks infor-
mation about the behaviors of the individual elements and the behavior of the
system as a whole. The structural information is sufficient for basic structural
analyses to catch modeling mistakes, such as connecting a physical component
directly with a purely cyber connector. However, to be able to do meaningful
formal analysis on the system behavior, the architecture needs to be annotated

7

with behavioral information pertaining to the system as a whole as well as to
the individual elements.

The physical elements in cyber-physical systems can be modeled most gen-
erally as hybrid systems, that is, dynamic systems with both continuous and
discrete state variables. Hybrid automata [ACH+93] are an intuitive and ex-
pressive framework for modeling hybrid systems. Of the various classes of hy-
brid automata, LHA [Hen96] are a class of hybrid automata for computational
tools are available for analysis, such as algorithms such as the computation of
reachable states over infinite horizon [AHH96]. LHA have continuous variables
with linear predicates and piecewise constant bounds on the derivatives. The
continuous dynamics in LHA makes the behavioral modeling of cyber-physical
components more faithful than the purely discrete FSP while still being able
to do formal behavioral analysis. LHA also provide a level of approximation to
detailed dynamic modeling that is commensurate with the type of analyses that
should be performed at the architectural level.

For the analyses of LHA, we make use of a tool called PHAVer [Fre05], which
supports compositional verification, as well as the exact reachability computa-
tion of LHA. The definition (the syntax) of LHA supported by PHAVer makes
a distinction between the continuous state and input variables of an automaton
based on whether or not they are inside the scope of the influence of the automa-
ton. The power to distinguish between the two is important because there are
directional couplings in the architectures of physical parts of the cyber-physical
systems in our CPS style. Moreover, PHAVer allows for the composition of
automata based on the input-output relations and synchronization labels. This
can capture composition of the behaviors of components into the system be-
havior, based on how the components are interconnected. This justifies the use
of PHAVer as an analysis tool when the behavioral annotations are modeled as
LHA. The fact that PHAVer is free from numerical errors and uses an exact
arithmetic with infinite precision is an added plus.

For this reason, the LHA model that we use follows the PHAVer syntax.

5 LHA mix-in family

In Acme ADL, the behavioral information can be added onto the architecture
by defining properties pertaining to the system and the elements. Properties
are user definable records that hold values of the specified type, e.g. name-value
pairs represented by records with a string name field of the type string and
the value field of the type integer. We have introduced two kinds of behavioral
annotations finite state processes (FSP) and linear hybrid automata (LHA).
This report focuses on LHA annotations.

8

To facilitate the LHA annotation, we define a new set of properties that will
hold the LHA information pieces. To be able to seamlessly incorporate these
LHA-specific properties, we have developed a new LHA mix-in family. A new
set of properties that hold the LHA models of the components, the composition
information (i.e. the input-output relations and synchronization labels) and a
set of global constants are defined. The specification of the expected behavior of
the system (also modeled as an automaton) is treated as a system-wide property,
while the individual automata are component-specific properties.

6 LHA plug-in

We have developed an LHA plug-in to facilitate easy editing of the LHA prop-
erties.

To facilitate the LHA annotation, we have introduced a new set of properties
that hold the LHA models of the components, the composition information (i.e.
the input-output relations and synchronization labels) and a set of global con-
stants. The specification of the expected behavior of the system (also modeled
as an automaton) is treated as a system-wide property1, while the individual
automata are component-specific properties.

PHAVer automaton definition consists of the automaton name, a list of syn-
chronizing labels, a list of input variables, a set of output variables, and the
automaton body. We define PHAVerAutomaton property type that consists of
a record that has exactly these fields − a name that is a string; a list of syn-
chronizing labels, a list of input variables and a list of state variables, where
every individual label, input variable and state variable is a string; and the
automaton body which is a just a big long string. This property applies to
every component and lets the user specify the automaton describing the behav-
ior of the component, as well as to the system, which lets the user specify the
specification automaton for the system.

These individual automata defined as above, can later be composed in parallel.
This parallel composition is treated as a system-wide piece of information.

Given the system which consists of parallel composition of the individual
PHAVer automata, the specification on the system is also specified as an au-
tomaton, a system-wide property as stated earlier. To check whether the paral-
lely composed system satisfies the required behavior or not, PHAVer checks for
the simulation relation between the system and the specification automata.

1Note that PHAVer also allows for the specifications to be described on individual com-
ponents which get composed as a system specification. However, we have not yet considered
this case.

9

Figure 1: Architectural modeling of a temperature-control system in AcmeStu-
dio

In addition to these automata, PHAVer also allows the user to define a list of
constants and their values. In LHA mix-in family, these are treated as name-
value pairs, and they belong to the system. The corresponding property type is
called PHAVerConstantList property type.

Appendix shows a screenshot of the various PHAVer related LHA properties
from the LHA mix-in family.

7 Example

We now illustrate the use of this plug-in on an example.

Consider a simple temperature control system comprising a room, a thermo-
stat and a furnace. The thermostat is located inside room and can read the
temperature in the room. The furnace can either be turned on or off manually,
and while on, the thermostat can dictate whether or not the furnace should
heat the room or not. (The way this is controlled in real systems is by turning
a blower forcing hot-air ventilation on or off.)

The goal is to maintain the measured temperature of this room close to a
specified set point set inside the thermostat. Figure 1 shows the architecture of
this system in AcmeStudio.

10

The architectural model of the system has three high-level components, namely
‘thermostat’, ‘furnace’ and ‘room’. All these components are representations of
lower level details in the hierarchy of the architecture. These lower level details
are not visible in the figure.

The thermostat consists of a temperature sensor that senses the temperature
of the room and broadcasts it on a communication channel. A temperature
estimator then reads the temperature reading from the communication channel
and updates the temperature state variable. The furnace estimator reads the
temperature state keeps updating the furnace state. Temperature controller is
the part of the software that keeps track of when the furnace estimator changes
the furnace state and communicates these changes to the furnace as commands
to turn the heating on or off.

The furnace comprises a furnace actuator software that receives commands
sent by the temperature controller in the thermostat and accordingly turns the
corresponding heating element called heat coil on or off. Finally, a transducer
element called SoftSwitch captures the manual on/off signals and communicates
those to the furnace actuator software element to turn the heating element on
or off.

The room has been modeled as generic hybrid dynamic systems.

A sample model of the behavior of the system in PHAVer LHA syntax would
be as follows.

//--
// Constants
//--

t_sample := 2; // sampling time of the controller

deltaH := 5; // delta above t_set for the thermostat to ignore
deltaL := 5; // delta below t_set fot the thermostat to ignore

rc_l := 0.2; // lower bound on the rate of cooling
rc_h := 0.4; // upper bound on the rate of cooling

rh_l := 0.5; // lower bound on the rate of heating
rh_h := 0.7; // upper bound on the rate of heating

t_set := 30; // setpoint for the thermostat

t_0l := 26; // lower bound for the confidence interval of t_0
t_0h := 28; // upper bound for the confidence interval of t_0

11

t_hottest := 50; // hottest the room can get, has to be > t_amb
t_amb := 0; // ambient temperature, has to be lower than t_hottest

t_m := 20; // lower bound on the temperature spec
t_M := 40; // upper bound on the temperature spec

//--
automaton furnace
//--
state_var : l;
synclabs: powerOn, powerOff, startHeat, stopHeat, heatOn, heatOff;

loc poweredOff: while True wait {True};
when True sync powerOn do {True} goto idle;
when True sync startHeat do {True} goto poweredOff;
when True sync stopHeat do {True} goto poweredOff;
when True sync powerOff do {True} goto poweredOff;
loc idle: while True wait {True};

when True sync startHeat do {True} goto startingHeat;
when True sync stopHeat do {True} goto stoppingHeat;
when True sync powerOff do {True} goto poweredOff;

when True sync powerOn do {True} goto idle;
loc startingHeat: while True wait {True};

when True sync heatOn do {True} goto idle;
when True sync powerOff do {True} goto poweredOff;

when True sync powerOn do {True} goto startingHeat;
loc stoppingHeat: while True wait {True};

when True sync heatOff do {True} goto idle;
when True sync powerOff do {True} goto poweredOff;

when True sync powerOn do {True} goto stoppingHeat;

initially: idle & l==0;
end

//--
automaton thermostat
//--

state_var: c; //c = clock variable
input_var: t;
synclabs: tick, startHeat, stopHeat, doNothing;

loc idle: while c <= t_sample wait {c’ == 1};
when c==t_sample sync tick do {c’==0} goto checking;

loc checking: while c <= 1 wait {c’ == 1};

12

when (t_set - deltaL) <= t sync startHeat do {c’==0} goto idle;
when t <= (t_set + deltaH) sync stopHeat do {c’==0} goto idle;
when (t_set - deltaL) <= t & t <= (t_set + deltaH)

sync doNothing do {c’==0} goto idle;

initially: idle & c==0;
end

//--
automaton room
//--

state_var: t;
synclabs: heatOn, heatOff, powerOff, error;

loc heating: while t_amb <= t & t <= t_hottest
wait {rh_l <= t’ & t’ <= rh_h};

when True sync heatOff do {t’== t} goto cooling;
when True sync powerOff do {t’== t} goto cooling;
when True sync heatOn do {t’== t} goto heating;

when t==t_hottest sync error do {t’== t_hottest} goto atHottest;
loc cooling: while t_amb <= t & t <= t_hottest
wait {-rc_h <= t’ & t’ <= -rc_l};

when True sync heatOn do {t’== t} goto heating;
when True sync powerOff do {t’== t} goto cooling;
when True sync heatOff do {t’== t} goto cooling;
when t == t_amb sync error do {t’== t_amb} goto atAmbient;

loc atAmbient: while True wait{True};
when True sync heatOn do {t’== t} goto heating;
when True sync heatOff do {t’== t} goto atAmbient;
when True sync powerOff do {t’== t} goto atAmbient;

loc atHottest: while True wait{True};
when True sync heatOff do {t’== t} goto cooling;
when True sync powerOff do {t’== t} goto cooling;
when True sync heatOn do {t’== t} goto atHottest;

initially: cooling & t_0l <= t & t <= t_0h;
end

//--
// Composition
//--

sys = furnace & thermostat & room;

13

//--
automaton spec
//--

state_var: t;
synclabs: heatOn, heatOff, error, tick,
startHeat, stopHeat, doNothing, powerOn, powerOff;

loc always:

while t_m <= t & t <= t_M wait {True};
when True sync heatOn do {True} goto always;
when True sync heatOff do {True} goto always;
when True sync startHeat do {True} goto always;
when True sync stopHeat do {True} goto always;
when True sync doNothing do {True} goto always;
when True sync powerOn do {True} goto always;
when True sync powerOff do {True} goto always;
when True sync tick do {True} goto always;

initially: always & t_m <= t & t <= t_M;
end

//--
// Simulation relation checking
//--

SIM_PRIME_WITH_REACH = false;
is_sim(sys,spec);
R = get_sim(sys,spec);
R.print;

If we look carefully at the above PHAVer code, we can see that there are six
different logical elements in it. They are − (i) constant definitions, (ii) furnace
automaton, (iii) thermostat automaton, (iv) room automaton, (v) composi-
tion information and (vi) specification automaton. Out of these, (i) constant
definitions, (v) composition information and (vi) specification automaton are
system-level information pieces. They are captured by properties pertaining to
the system. When the system (whitespace in AcmeStudio) is selected, the LHA
plug-in displays the system-wide properties editor as shown in Figure 2.

The rest of the parts− (ii) furnace automaton, (iii) thermostat automaton and
(iv) room automaton are specific to the components. This information is stored
in the properties that are specific to the components ‘furnace’, ‘thermostat’ and
‘room’ respectively. When any of these compoents is selected, the LHA plug-in

14

Figure 2: LHA plug-in: System-level properties editor

15

Figure 3: The LHA plug-in screen when the component ‘room’ is selected

displays the component-specific editor screen, one sample of which is shown in
Figure 3. Figure 4 shows the same screen of the LHA plug-in in detail.

This screen shows the automaton room stored in pieces as per the properties
defined in the LHA mix-in family. There are similar screens when the compo-
nents ‘furnace’ and ‘thermostat’ are selected. Those screens can be found in the
appendix, in figures 6 and 7.

There is no PHAVer data associated with the roles. Therefore, when any role
is selected, the plug-in displays a blank screen showing that there is no PHAVer
data to display.

Lastly, when any connector is selected, the plug-in is programmed to show a
mapper screen. This has been reserved for future work. We wish to incorporate
the renaming capability for the synchronizing labels, and the input and state
variables of the individual automata when they are composed. This will be done

16

Figure 4: LHA plug-in: Room automaton in detail

17

when the connectors will connect the two components corresponding to the two
automata. Currently this is not supported in PHAVer. Therefore, this screen is
currently just two blank columns.

These additional screenshots of the plug-in can be found in the appendix.

8 Conclusion

In this report we presented a plug-in that facilitates easy editing of Linear Hy-
brid Automata (LHA) annotations of the components and connectors of cyber-
physical system architectures. As a part of future work, we are working on dy-
namic renaming of input-output variables and synchronizing labels of different
automata under composition. The possible options to implement this are either
the addition of this renaming feature in PHAVer or some text pre-processing us-
ing some scripting language such as Perl. We have not implemented this feature
yet.

9 Appendix

This section has a few screenshots that clarify the operation of the LHA plug-in.

First is the screenshot of the properties defined as a part of LHA mix-in family.
It was tricky to fit this figure on one page because of its dimensions. It may not
print on letter paper very well. However, in the PDF version of this document,
it will serve the purpose of capturing all the records of the properties defined
under the LHA mix-in family. The reader will be able to see the contents of the
figure by zooming in and rotating the page while viewing the PDF copy of this
report. Figure 5 shows this screenshot.

18

Figure 5: Properties in LHA mix-in family

19

Figure 6: The LHA plug-in screen when the component ‘furnace’ is selected

The next two screenshots shown in Figures 6 and 7 are of the LHA plug-in
when the compoenents ‘furnace’ and ‘thermostat’ are selected. These are similar
to the one shown in Figure 3 and have been included here just for reference.

20

Figure 7: The LHA plug-in screen when the component ‘thermostat’ is selected

21

Figure 8: The LHA plug-in screen when a role that has no PHAVer data is
selected

Figure 8 shows the LHA plug-in when an element (specifically, any role)
is selected that has no corresponding PHAVer data. Note that this is different
from having a blank data. In case of blank data, a blank skeleton will be shown.

22

Figure 9: The LHA plug-in screen when the connector between ‘furnace’ and
‘room’ is selected

Lastly, in Figure 9, we have a screen capture that shows the mapping page
that has been left for future work. PHAVer does not support renaming of
synchronizing lablels and input and state variables yet. If and when it supports
this kind of renaming, we will be developing this screen further to show the
mapping of input-output variables and renamed (new name and old name of)
synchronizing lables.

23

References

[ACH+93] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-
Hsin Ho. Hybrid automata: An algorithmic approach to the speci-
fication and verification of hybrid systems. In Robert L. Grossman,
Anil Nerode, Anders P. Ravn, and Hans Rischel, editors, Hybrid
Systems, volume 736 of LNCS, pages 209-229. Springer, 1993.

[AHH96] R. Alur, T.A. Henzinger, P.-H. Ho. Automatic symbolic verifica-
tion of embedded systems. IEEE Trans. on Software Engineering
22(3):181-201, 1996.

[DRRS99] Dvorak D, Rasmussen R., Reeves G., Sacks A., Software Architecture
Themes in JPL’s Mission Data System, AIAA Space Technology
Conference and Expo, Albuquerque, NM, 1999.

[Fre05] G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems past
HyTech. Proceedings of the Fifth International Workshop on Hybrid
Systems: Computation and Control (HSCC), Lecture Notes in Com-
puter Science 3414, Springer-Verlag, 2005, pp. 258-273.

[GMW00] Acme: Architectural Description of Component-Based Systems.
David Garlan, Robert T. Monroe, and David Wile. In Gary T. Leav-
ens and Murali Sitaraman editors, Foundations of Component-Based
Systems, Pages 47-68, Cambridge University Press, 2000.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proc. 11th
Annual IEEE Symposium on Logic in Computer Science, LICS’96,
New Brunswick, New Jersey, 27-30 July 1996, pages 278-292. IEEE
Computer Society Press, 1996. An extended version appeared in Ver-
ification of Digital and Hybrid Systems (M.K. Inan, R.P. Kurshan,
eds.), NATO ASI Series F: Computer and Systems Sciences, Vol.
170, Springer-Verlag, 2000, pp. 265-292.

24

