
 1  

Project 3: Movement Decoding for Brain Computer Interfaces 
 

Akshay Rajhans 

arajhans@ece.cmu.edu 

 

Abstract –  
In this project, we build a classifier using Support 

Vector Machine (SVM) for two datasets of the problem of 

decoding movement using brain-computer interfaces. The 

purpose of the SVM classifier is to classify experimental 

data into two categories – left movement and right 

movement.  

The accuracy of the SVM classifier is tested using 6-

fold cross-validation. In each fold, the value of lambda, a 

parameter deciding the relative importance between the 

classifier margin and the classifier (in)accuracy is chosen by 

doing 5-fold cross-validation. Mean and standard deviation 

of the test accuracy results obtained in the 6 folds is 

computed.   

   

1. Overview 
In this project we build a classifier using Support 

Vector Machine (SVM) for two different data sets of the 

experiment of movement detection using brain-computer 

interfaces. The purpose of the classifier is two classify the 

experimental data into two categories – left movement and right 

movement. The decision function of a general SVM classifier 

works by creating a linear decision function w’x+c whose value 

being of either sign decides which class a particular data point 

belongs to. 

 
The decision function is shown above. Pictorially, the 

classification problem is as shown below. Here, only the first 

two dimensions of the data are shown, but in both data sets we 

have M = 204 dimensions, therefore 204 weights.  

 

Each experiment gives us a data point (a point in the M 

dimensional space), i.e. an M-dimensional vector. There are 120 

such points of each class in either data sets.  

 The accuracy of the classifier is tested in by 6-fold 

cross-validation. 1/6
th

 (20x2) of the data points are saved for test 

set and the classifier is trained on the rest of the 5/6
th

 (here 

100x2) points from either class.  

The value of the parameter lambda can be varied to set 

the relative importance of the cost between the weights i.e. the 

classifier margin and the classifier (in)accuracy for the training 

set. Here different values of lambda that were tested were {0.01, 

1, 100, 10000}. The best value of lambda is found by a second 

tier of cross-validation. Of the 5/6
th

 of data points available for 

training, 1/5
th

 (i.e. 1/6
th

 of the total points) are set aside for test 

set, while the remaining 4/5
th

 (i.e. 4/6
th
 of total points) are used 

for training set. This procedure is repeated 5 times while 

choosing different combinations of training and test sets. The 

best value of lambda is chosen as the one that results on an 

average the minimum number of misclassifications. 

Once the lambda value is chosen, the classifier is 

trained again, this time on the entire training set of 5/6
th
 of 

points. Then this classifier is tested on the 1/6
th

 of the data 

points in the test set. The accuracy (% of correct classifications) 

are recorded and the procedure is repeated 6 times, choosing 

different combinations of training and test sets. 

Finally, the mean and the standard deviation of the 

accuracies obtained in the 6 folds is calculated.  

This entire process is implemented on the two data sets 

provided. 

 

2. Mathematical Formulation 
While training the SVM classifier, the objective is to maximize 

the classification margin, while minimizing the number of 

misclassifications. This goal can be captured using the 

constrained optimization problem 

 
where yi is the training label of the i

th
 point, +/-1, ξi is the error 

made in classifying the i
th

 sample point, N is the number of 

weights, i.e. the number of features in the data set (here 204). 

 The constrained optimization problem can be turned 

into an unconstrained optimization problem by moving the slack 

in the constraints into the cost function. The violation of the 

constraints is penalized heavily with minimum penalty while 



 

 

satisfying the constraints. This can be captured using an 

indicator function, which has a discontinuity at the boundary of 

the constraints. We approximate the indicator function using the 

negative log barrier function with a parameter ‘t’.  

The equivalent unconstrained optimization problem in 

each iteration after moving the log barrier function into the cost 

becomes  

 
With each iteration, t is increased by a factor of beta, and the log 

barrier function starts emulating the indicator function 

increasingly well. When we reach sufficient accuracy, (t = 

tmax), we stop the iteration.  

This interior point iteration has been shown in the 

pseudocode interior_point. We start the interior point 

method iteration by making an initial (feasible) guess z0.  

 

Pseudocode interior_point 
w0 = zeros(M,1); c0 = 0; 

for i=1:N 

 xi(i) = 0.001 + max((1-y(i)*(w0’*x(:,i)+c)),0); 

end 

z0 = [w0; c0; xi0]; 

while t < tmax 

 z* = solve_unconstrained(z0); 

 z0 = z*; 

 t = beta*t; (beta = 15) 

end while 

 

For each value of t, the unconstrained optimization 

problem (**) is solved using a Newton iteration, as shown in 

pseudocode solve_unconstrained. The optimal solution z* 

returned by the Newton step is used to update the initial value 

z0 for the next Newton step and the parameter t is updated. This 

is done until t becomes sufficiently large indicating that 

sufficient accuracy of the log barrier function is achieved. 

 

Pseudocode solve_unconstrained 
z = z0 

sigma = inf; 

while sigma/2 <= epsilon (epsilon = 1e-6) 

 deltaZ = - hessZ\gradZ; 

 sigma = gradZ’*(-deltaZ); 

 s = line_search(z,deltaZ); 

 z = z + s*deltaZ; 

end 

 

In each Newton step, the optimization vector z is 

moved one step closer to the optimum by doing z = z + s* Δz. 

The step size s is computed by doing line search. In words, the 

idea is to take as big a step as possible (up to 1*Δz) so long as 

the new z doesn’t become infeasible. The actual implementation 

is shown in pseudocode line_search. 

 

Pseudocode line_search 
stop = false; 

s = 1; 

while ~ stop 

 z1 = z0 + s*deltaZ; 

i.e. [w1; c1; xi1] = [w0; c0; xi0] + s*deltaZ; 

if (w1’*x(:,i)*y(i)+c1*y(i)+xi(i)–1>0) & (xi(i)>0) forall  i

   stop = true; 

end 

if ~stop 

 s = s/2; 

end 

end 

3. Experimental Results 
This section shows the experimental results.  

 

For the first training fold, the channel weights plots for 

the two data sets for trial 1 are shown in Fig. 1 and 2. 

 

 
Fig. 1: Channel plot for the first training fold for the Img 

data set 

 

 
Fig. 2: Channel plot for the first training fold for the Overt 

data set 

 

Fold 

# 

Overt Img 

# Mis Ac (%) # Mis Ac (%) 

Trial 

1 

Trial 

2 

Trial 

1 

Trial 

2 

Trial 

1 

Trial 

2 

Trial 

1 

Trial 

2 

1 0 4 100 90   5 5 87.5    87.5 

2 1 1 97.5 97.5 6 4 85 90 

3 2 2 95 95 5 4 87.5 90 

4 4 2 90 95 3 5 92.5 87.5 

5 2 1 95 97.5 4 3 90 92.5 

6 4 0 90 100 5 5 87.5 87.5 

Table 1: Accuracy of the six runs over 2 trials of 2 datasets 



 

 

The test accuracy of each fold for the two data sets is 

shown in the Table 1. 

 

Data set Mean (%) Standard Deviation (%) 

Trial 1 Trial 2 Trial 1 Trial 2 

Overt 94.58 95.83 4.0052 3.4157 

Img 88.33 89.17 2.582 2.0412 

Table 2: Mean and standard deviation of the accuracies of 

the six folds for the two data sets over two trials 

 

The mean accuracy and standard deviation of the 

accuracies of all folds for the two data sets is shown in Table 2. 

 

 Overt Img 

w -0.0005    0.0004   -0.0004   -0.0004 
-0.0001    0.0000   -0.0001   -0.0010 
-0.0005   -0.0001   -0.0004    0.0006 
-0.0002   -0.0002   -0.0002   -0.0002 
-0.0003   -0.0002   -0.0005    0.0002 
-0.0001   -0.0003    0.0001    0.0002 
-0.0005   -0.0001   -0.0005   -0.0001 
-0.0001   -0.0002    0.0001    0.0001 
0.0001   -0.0000   -0.0002   -0.0002 
-0.0003   -0.0002    0.0002   -0.0001 
-0.0000   -0.0000   -0.0006   -0.0004 
-0.0000   -0.0001    0.0006    0.0003 
-0.0004   -0.0001   -0.0004   -0.0001 
0.0003    0.0003    0.0003    0.0002 
0.0000    0.0001   -0.0001    0.0002 
0.0003   -0.0000   -0.0002   -0.0003 
0.0000    0.0001   -0.0003    0.0001 
0.0001   -0.0002   -0.0001    0.0005 
0.0002    0.0001   -0.0007   -0.0002 
-0.0003    0.0001   -0.0006   -0.0004 
-0.0000    0.0004    0.0002   -0.0002 
-0.0004    0.0001   -0.0005    0.0000 
0.0002    0.0005   -0.0006   -0.0001 
-0.0003    0.0003    0.0002   -0.0000 
0.0000    0.0002    0.0006   -0.0000 
0.0002   -0.0003    0.0002   -0.0001 
-0.0003   -0.0001    0.0009   -0.0001 
0.0001   -0.0002   -0.0003   -0.0005 
-0.0001   -0.0003   -0.0004    0.0003 
0.0000   -0.0000   -0.0002   -0.0001 
0.0000   -0.0003    0.0001    0.0004 
0.0003    0.0003    0.0001    0.0001 
-0.0001    0.0003    0.0002    0.0003 
0.0000   -0.0000    0.0001   -0.0005 
-0.0002   -0.0001    0.0007    0.0005 
-0.0001    0.0001   -0.0002    0.0001 
-0.0002    0.0003   -0.0004    0.0001 
-0.0002    0.0006    0.0001    0.0002 
-0.0000    0.0003   -0.0011    0.0004 
-0.0001   -0.0000   -0.0000   -0.0002 
-0.0000    0.0004    0.0002    0.0001 
-0.0003    0.0005    0.0001    0.0000 
0.0002   -0.0000    0.0007   -0.0001 
0.0000   -0.0001   -0.0004   -0.0001 
0.0001    0.0003    0.0005   -0.0003 
-0.0003   -0.0002   -0.0003   -0.0005 
0.0003    0.0001   -0.0003   -0.0001 
-0.0005   -0.0001    0.0003   -0.0004 
0.0001   -0.0003   -0.0001    0.0000 
-0.0002   -0.0009   -0.0007    0.0001 
-0.0002    0.0003   -0.0006    0.0001 

-0.0119    0.0032   -0.0095   -0.0188 
0.0051    0.0066   -0.0113   -0.0371 
-0.0058    0.0124   -0.0058    0.0193 
0.0036    0.0072   -0.0021   -0.0048 
0.0023   -0.0065   -0.0070    0.0042 
-0.0010   -0.0113    0.0009    0.0084 
-0.0077    0.0028   -0.0016   -0.0029 
0.0001   -0.0038   -0.0067    0.0013 
-0.0014    0.0029    0.0035   -0.0053 
0.0020   -0.0105   -0.0057   -0.0010 
0.0006    0.0008    0.0007   -0.0071 
0.0096   -0.0090    0.0059   -0.0022 
0.0035   -0.0019   -0.0008   -0.0023 
-0.0029    0.0011    0.0021    0.0030 
-0.0062    0.0001   -0.0081   -0.0031 
-0.0006   -0.0022   -0.0104   -0.0102 
-0.0015    0.0027   -0.0023   -0.0005 
0.0022    0.0015   -0.0000    0.0181 
0.0058    0.0034   -0.0211   -0.0039 
-0.0067    0.0025   -0.0111   -0.0148 
0.0000    0.0041   -0.0074   -0.0015 
-0.0068   -0.0002   -0.0116    0.0038 
0.0055    0.0035   -0.0018    0.0060 
-0.0064   -0.0004    0.0015    0.0017 
-0.0010    0.0028    0.0165   -0.0016 
0.0073    0.0013    0.0012    0.0004 
-0.0078   -0.0062    0.0209   -0.0024 
0.0076   -0.0033    0.0002   -0.0089 
-0.0023   -0.0062   -0.0028   -0.0048 
-0.0084   -0.0018   -0.0038   -0.0037 
0.0018    0.0015   -0.0012   -0.0018 
-0.0046    0.0004    0.0136   -0.0018 
-0.0072    0.0000    0.0055    0.0069 
0.0032   -0.0057    0.0112   -0.0086 
-0.0099   -0.0056    0.0297    0.0153 
0.0033    0.0055   -0.0011   -0.0020 
-0.0019    0.0013   -0.0087    0.0023 
0.0003    0.0046    0.0060   -0.0053 
0.0028    0.0025   -0.0333    0.0028 
-0.0014    0.0004   -0.0015    0.0031 
0.0030    0.0005    0.0043    0.0012 
-0.0023   -0.0035    0.0062    0.0029 
0.0003    0.0010    0.0177   -0.0012 
0.0038    0.0116   -0.0027   -0.0038 
-0.0019    0.0066    0.0036    0.0096 
0.0036    0.0045   -0.0054    0.0015 
-0.0004    0.0014   -0.0086    0.0020 
-0.0048   -0.0092    0.0166    0.0031 
0.0084   -0.0041   -0.0064    0.0017 
-0.0136   -0.0174   -0.0262   -0.0054 
0.0069   -0.0121   -0.0284    0.0017 

c -0.6083 -30.8974 

Table 3: The w and c of the first folds of the two data sets 

(trial 2 is shown here) 

 

Table 3 shows the w and c values for the two data sets 

for the first fold. The numbers are from the second trial. The w 

vectors are to be read column-wise, i.e. the first within the first 

column that shows the w for the Overt data set, the first sub-

column shows the w(1:51) values, the second w(52:102) and so 

on. 

 

 

Fold # Overt Img 

Trial 1 Trial 2 Trial 1 Trial 2 

1 100 100  100 0.01 

2 100 100 0.01 0.01 

3 100 100 1 0.01 

4 1 0.01  1 100 

5 100 100 100 0.01 

6 1 100  0.01 100 

Table 4: The best lambda values that got selected in the two 

trials on the two data sets 

 

Table 4 shows the different lambda values that got 

picked as a result of the inner 5-fold cross-validation in each of 

the 6 iterations for the two data sets. 

Apart from this, training errors (# misclassifications) 

for each inner fold for each lambda value were also saved for 

each top level iteration for either data sets for two trials. 

Unfortunately, this is too much information to represent in this 

report. However, on an average, they seem to agree with the 

other average values of the overall accuracy results of ~95% for 

the Overt data set and ~89% accuracy of the Img data set. 

 

4. Discussion 
In this we try to interpret our experimental sections from Sec. 3.  

 

4.1 Factors that may impact classification accuracy 

One obvious factor that impacts classification accuracy 

is which data set is used. Looking at Tables 1 and 2, it is clear 

that the nature of the Overt data set is such that the classification 

is more accurate on that data set compared to Img.  

 Other than the data set, another factor that might 

impact the classification accuracy is the value of lambda chosen. 

The lambda value decides the relative importance between the 

classification margin (w) and classification accuracy (xi). Large 

values of lambda force w to smaller values. Small valued of 

lambda allow larger values of w. Since w is a factor in 

determining the classification margin, lambda is in turn 

responsible for the classification margin and hence classification 

accuracy.  

 While more trials would be needed to concretely say 

this, but it appears that lambda values on the larger side (1 or 

100) tend to get chosen for the Overt data set, as compared to 

Img, which has more instances of 0.01 as the best lambda value. 

As conjectured in the earlier paragraph, smaller value of lambda 

tends to allow bigger w values, in turn worse classification 

margin. This probably explains the slightly lower accuracy 

(~89%) of the classifier for the Img case, compared to the 

higher (~95%) accuracy for the Overt case.  



 

 

 

4.2 Limits or problems of your approach 

 Currently, the code is efficient and vectorized, but still 

serial. The cross validation operations are ideal for running in 

parallel either by manually spawning multiple computations on 

different machines in a cluster or automatically by using parallel 

processing toolbox in Matlab.  

 In the current implementation for 6x5 = 30 cross-

validation training and testing for 4 values of lambda are done 

serially. They can be run parallelly. 

 

4.3 Possible improvements that can be done 

 As said in the earlier subsection, the parallel 

computation, if implemented can in theory make the 

computation faster by ~ 120 (6x5x4) if 120 computers are 

available. In reality though, even if it is implemented on 5 

machines, one inner cross-validation operation per computer, it 

will speed up the computation approximately 5 times.  

 It’s probably okay for the code of a class-project to do 

the cross-validations serially. However, any serious attempt 

should implement parallel computation because it is so readily 

doable.   

 

4.4 Anything unique you have done to improve/validate your 

program’s accuracy/efficiency 

 

4.4.1 Validation of accuracy 

To validate that the program is running accurately, we used two 

techniques –  

A) Qualitative Validation:   

Qualitative validation can be carried out by making 

sure that the visual representation of the w vectors 

looks similar to the eye. Indeed, for either of the data 

sets, the color/shape/pattern was repeatable across the 2 

trials each consisting of 6 folds of cross-validation. and  

B) Quantitative Validation: 

Quantitative validation was done by looking at the 

accuracy and the mean and the standard deviation 

across the two trials. From Table 2, we can see that the 

mean and standard deviation numbers are repeatable 

across the two trials. 

 

4.4.2 Improvement of efficiency 

The major step towards improving the efficiency was to 

vectorize the gradient and Hessian computations. Gradient and 

Hessian computations are required once in each Newton step, 

several of which are needed in every interior point method 

implementation. Then there is the nested cross validation that is 

done 6x5 = 30 times. Thus, the gradient and Hessian 

computations are critical to the efficiency of the code. With the 

dumbest implementation using for loops to do the summations, 

it would take approximately 5 minutes to compute the Hessian 

matrix once. The denominators in the gradient and Hessian 

matrices are same for all the terms and can be pre-computed. 

Further, the for loops can be replaced by matrix-vector 

multiplications. Wherever summation is needed, a 

vector’*vector type computations were used; while in cases 

where summation wasn’t to be computed, diag(vector)*vector 

was used. Multiplications of terms in a vector and divisions of 

the denominator were done using the elementwise versions .* 

and ./ respectively. All these operations are much much faster 

than their corresponding for loop implementations. Hence the 

computation time for the Hessian came down from ~ 5 minutes 

to a fraction of a second.   

With the current implementation, it takes 

approximately half an hour to do the entire series of 

computations on a single data set.  

 

5. Conclusions 
In this project, we build a support vector machine 

classifier in order to classify the data given by two experiments 

of movement detection using brain-computer interaction. The 

accuracy of the classification was tested using 6-fold cross-

validation. The parameter lambda, that determines the relative 

importance of the classification margin (w) and classification 

(in)accuracy (xi) in the cost function, was decided from four 

possible values of {0.01, 1, 100, 10000} by doing 5-fold cross-

validation in each of the 6 top-level folds.  

 Experimental results show that this is a promising 

approach with mean accuracy of classification being about 95% 

for one data set and about 89% for the other. The computation 

time was significantly good, however parallel implementation of 

cross-validation if and when added is likely to provide even 

more speed up.  

 

References 
[1] Project 3 presentation, Jinyin Zhang, Xin Li, ECE Department, Carnegie 

Mellon University 

[2] Lect ure 13, Unconstrained Optimizaion – Gradient and Newton Methods, 
Xin Li, ECE Department, Carnegie Mellon University 

[3] Lect ure 15, Constrained Optimizaion – Inequality Constraints, Nonlinear 
Constraints and Interior Point Method, Xin Li, ECE Department, Carnegie 

Mellon University 

[4] Lect ure 20, Classification – Support Vector Machine and Regularization, 
Xin Li, ECE Department, Carnegie Mellon University 

 
 

 

 


