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Abstract – 
In this project, we numerically solve for the steady-

state temperature of a panel using 2D thermal analysis. We 

discretize the panel into a number of small areas and 

formulate the heat equations for the temperatures of these 

areas as a linear system of equations by approximating the 

Laplacian operator for the temperature evolution into a 

second-order linear approximation. The positive-definite 

symmetric diagonally dominant matrix “A” in the system of 

equations Ax = b is then factorized into a lower triangular 

matrix “L” and its transpose L‟ such that L x L‟ = A 

(Cholesky decomposition). Once we have the matrix L, the 

system Ax = b can be solved in two steps by solving 

equations Ly = b and L‟x = y. Since L (and L‟ respectively) 

is a lower (upper) triangular matrix, the equation can be 

solved using forward (backward) substitution.  

 We implement this in Matlab, while trying to 

minimize the „for‟ loops and trying to vectorize the 

operations as much as possible. As a part of discussion of the 

accuracy of the results, the results obtained are compared 

with the results given by standard matlab functions for 

solving a linear equation, i.e. the backslash command and 

the Cholesky decomposition function „chol‟.  

 

1. Equation Formulation 

The steady-state heat equation is given by  

 
The panel for which we are doing the thermal analysis is 

discretized into many small rectangles as shown in the given 

figure. The temperature of each panel is an unknown variable 

we would like to find the steady-state value of.  

 

For each panel, we have the following equation, where i is the 

index of the panel in the x direction and j is the index in the y 

direction.  

 
The partial derivative operations in the Laplacian operator can 

be approximated by the second order linear approximations 

 
This gives us the following system of equations, one per panel. 

  
Here, we observe that the temperature of each panel contributes 

to its neighboring panels in the x and y directions. We define 

new constants  = / x
2
 and  = / y

2
.  

The size of the panel x and y is calculated by 

dividing the x and y dimensions of the panel (given by variables 

mediumX and meduimY) by the number of panels in the x and 

y directions, here N and M respectively (and in the code nX and 

nY). 
 

Formulation of the “A” matrix: 

Our final goal is to solve the steady-state value of the 

temperatures using linear equation solving. Therefore, we 

convert the temperatures in this matrix format, into a vector 

format. In principle, this is like using the „reshape‟ command in 

Matlab, however, we do not need to store the unknowns. Once 

we have converted the temperatures from a matrix to a vector, 

the observation that each temperature contributes to the 

temperature at +-1 entries in x and y direction needs to be 

modified. In the vector case now, each temperature contributes 

to the +/- 1 entries, which are the x-neighbors and +/- N entries, 

which are now the y-neighbors.  

 For panels inside boundaries, we fill out the A matrix 

row-by-row. For ith row, the diagonal (ith) entry is 2( + ), 

while the i+/-1
st
 entry is - and the i+/-Nth entry is - For 

panels at boundaries, one (two in case of the four corners) 

neighbors are actually the boundary conditions. In such cases, 

the addition of -  or -  is simply skipped.  



 

 

 

 

 

Formulation of the “b” vector: 

The b vector is the vector of the inputs to the panels, given by 

the p matrix. Here, we use the reshape command to turn the p 

matrix into a vector.  

 For panels close to boundaries, we need to update the 

boundary conditions. Therefore, we add c and c 

where c is the temperature of the boundary condition 

converted to Kelvin) to the corresponding values in the p matrix. 

This forms the updated “b” vector. 

2. Cholesky Factorization 

Cholesky factorization works by turning a positive definite 

symmetric “A” matrix into a product of a lower triangular 

matrix L and its transpose L‟.  

 Unlike the technique shown in class, which focused on 

solving all the entries of the L matrix one by one, a significant 

amount of speedup can be achieved by computing the values of 

one column at a time. This is one of the highlights of this project.  

 To compute the entries of the L matrix one column at a 

time, we iterate over the index of the columns, nCol, starting 

with the first column. The diagonal entry of the first column is 

given by: 

 
d = sqrt(A(nCol,nCol)); 

 

whereas, the lower entries in the first column are given by: 
 

L(nCol+1:end,nCol) = A(nCol+1:end,nCol)/d; 

 

This is because the first column of L gets multiplied only by 

the first entry l11 to form the first column of A.  

 The second column onwards, the entries of L start 

depending on the columns to the left of the column under 

consideration. In this case, the diagonal entry still has a special 

structure, and is given by: 

 
d = sqrt(A(nCol,nCol)-(L(nCol,1:nCol-

1)*L(nCol,1:nCol-1)')); 

 

This captures the said effect of the dependence on the columns 

1:nCol.  

The lower entries are given by: 

 
L(nCol+1:end,nCol) = (A(nCol+1:end,nCol)-

(L(nCol+1:end,1:nCol-1)*L(nCol,1:nCol-

1)'))/d; 

 

This captures the dependence on the columns 1:nCol. 

 

Forward and backward substitution: 

Once we obtain the L (and in turn L‟) matrix, we can 

use it to solve for the temperature vector. This can be done in 

two steps. We substitute A = L.L‟ in the equation Ax = b. This 

gives us the equation L.L‟x = b. We can substitute another 

vector y such that L‟x = y and then we get L.y=b. Since L and 

L‟ are lower and upper triangular matrices respectively, these 

two equations can be solved relatively easily.  

 

 

Forward substitution to get y from the equation L.y=b: 

In case of the first row, there is just one element in the matrix L. 

Therefore, the first entry of y can be given by: 
y(nRow) = b(nRow)/L(nRow,nRow); 

 

For the rest of the entries in the y vector, we iterate 

over the row index from 2 to the size of y. For these entries, we 

can subtract the contribution due to the elements to the left of 

the diagonal entry in each row and divide it by the diagonal 

entry of L. This gives the values of the y vector 2 through size 

of y. The vectorized command for this operation is: 

 
y(nRow) = (b(nRow) - (L(nRow,1:nRow-

1)*y(1:nRow-1)))/L(nRow,nRow); 
 

Backward substitution to get x from the equation L‟x = y: 

Here, the idea is similar to that of the forward substitution, 

however, we need to do it in the reverse order – the last entry is 

the easiest to solve. For this last entry, since there is only one 

element in the last row of L‟, we can get the last value in the x 

vector as follows: 
x(nRow) = y(nRow)/L(nRow,nRow); 

 

In case of the remaining entries, i.e. 1 through size of b 

– 1, we subtract the contribution of all the entries to the right of 

the diagonal entry in L‟ and divide by the diagonal entry of L‟. 

The contribution by the entries to the right of the diagonal one is 

that of the entries in x vector below the one we are trying to 

solve. The vectorized command for this operation is given by: 

 
x(nRow) = (y(nRow) - 

(L(nRow+1:N,nRow)'*x(nRow+1:N)))/L(nRow,nRo

w); 
 

The x vector we get at the end of the backward 

substitution is the temperature vector. We reshape this into a 

matrix to get it into the original format by using the „reshape‟ 

command. Further, we convert it from Kelvin to degree Celsius. 

This forms the matrix „temperature‟ in the requested format, of 

the same size of „p‟, ready to be plotted using „thermalplot‟. 

 

3. Experimental Results 

 

Following are the results returned by the program. The three 

plots depict the temperatures.  

 

For some reason, I seem to be getting wrong values of 

temperature from the program. I compared the results I get with 

the backslash command of Matlab, and they seem to match. 

There is possibly some error in the problem formulation. 

 

The plots I get are attached below. 



 

 

 
Figure 1: Steady-state temperature plot for case 1 

 

 
Figure 2: Steady-state temperature plot for case 2 

 

Figure 3: Steady-state temperature plot for case 3 

 

 

The following table summarizes the computational time 

required by the program for the three cases. These were 

evaluated in Matlab using the tic and toc commands.  

 

Computational times: 

Case 1 2.9082 seconds 

Case 2 23.293 seconds 

Case 3 185.02 seconds 

 

4. Discussion 

Accuracy and efficiency the program can achieve: 

In order to analyze the accuracy of the result returned by the 

program, we compared the max of the absolute error between 

our solution and the solution returned by the backslash 

command. The error seems to be significantly small which 

implies that the program is performing fairly accurately.  

 

Case 1 1.4552e-011 

Case 2 8.3674e-011 

Case 3 5.0932e-011 

Table 1: Max of absolute error between any entry of the 

temperature vector returned by the program and by the 

backslash command 

 

In order to analyze the accuracy of the Cholesky decomposition 

performed by the program, we again sought the max of the 

absolute error made by the entries in the L matrix computed by 

this program compared to the L matrix returned by the „chol‟ 

command in Matlab. The results are summarized in the 

following table. 

 

Case 1 6.3665e-012 

Case 2 1.819e-011 

Case 3 4.0927e-011 

Table 2: Max of absolute error between any entry of the L 

matrix returned by the program and by the chol command 

 

As seen in the table, the error made is extremely small. 

Therefore, the program seems to be doing a good job. 

 

Size of problem your program can handle: 

This program can handle all three sizes of the cases given in the 

problem set. The computation time required seems to grow with 

the size of the panel, but this is expected. Given a panel of MxN 

elements, we need to formulate the “A” matrix that has (MxN)
2
 

entries. 

 

Possible improvements that can be done: 

1. Bug resolution: There is some mistake in the problem 

formulation, which is giving me wrong results. I cannot 

seem to be able to find out where the bug is. But that is 

the improvement that is needed.  

2. Exploiting sparsity: Currently, the code does not 

exploit the fact that the A matrix is mostly sparse. This 

will probably provide the most speed-up for the third 

case, which has the largest variable size to solve.  

 



 

 

Anything unique you have done to improve/validate your 

program's accuracy/efficiency: 

The most important unique improvement in this code is that the 

„for‟ loops have been kept at a minimum and the code is 

vectorized, optimizing its speed and efficiency for the for matrix 

operations.  
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