
Automatic Synthesis of Information Flow Driven
Execution Managers for Embedded Software

Applications
Nikita Visnevski,

GE Research
Niskayuna, NY, USA

nikita.visnevski@ge.com

Teresa Hubscher-Younger
MathWorks

Natick, MA, USA
thubsche@mathworks.com

Akshay Rajhans
MathWorks

Natick, MA, USA
arajhans@mathworks.com

Baoluo Meng
GE Research

Niskayuna, NY, USA
baoluo.meng@ge.com

Abstract—This paper presents an approach to simplifying
embedded application development process by means of auto-
matic synthesis of portions of application code concerned with
information and execution flow management. In this preliminary
study, we adopt a simple information flow categorization model
which captures characteristics of data periodicity and criticality.
This model is then used to define a formal specification of
the interface of an embedded application. We show that, given
such a specification, it is possible to automatically synthesize
an application execution manager state machine that links the
core of the application with various contingency management
routines. This partially relieves the burden placed on embedded
application developers allowing them to focus on development
of the application core as well as on definition of actions to
be taken when critical information flows are disrupted. They
no longer need to create and manage code that monitors the
information flows and implements logic for interrupting the
execution of the core and invoking contingency management.
This aspect would be automatically generated for them based
on the design specification. Such automation offers a number
of potential benefits to development productivity, cost reduction,
software quality, validation, verification, and certification.

Index Terms—embedded software, middleware, avionics, code
generation

I. INTRODUCTION

Contemporary embedded software applications trend to-
wards a high degree of modularization and utilization of
abstraction layers to tightly encapsulate details of their im-
plementation. They are expected to operate as standalone
modules in real-time embedded deployment environments
and be easily portable across multiple operating systems.
The embedded deployment environments have evolved into
complex, integrated platforms, offering scheduling, application
management, and middleware-based information exchange
services. It can thus be advantageous to develop embedded
software applications following a “microservice” paradigm
[1]. In doing so, however, application developers frequently
encounter many challenges, some of which are not well
understood, under-appreciated, and often addressed in an ad
hoc fashion. This paper proposes an approach to addressing
one such problem—abstracting core microservice algorithm
implementation from the effects of asynchronous information

flow. Our approach to algorithm synthesis and code generation
yields a reliable application execution management structure
resilient to adverse effects of asynchronous data transports.

Embedded applications consume information from or pro-
duce information for other applications as asynchronous mes-
sages using one or more middleware-based data transport
services available on the deployment platform. They may have
no control over the rate, regularity, and reliability of these
messages, and need to incorporate contingency algorithms to
deal with message dropout and communication anomalies.
Traditionally, the implementation of the application is man-
ually tailored to the set of possible anomalies in information
flows in a highly application-specific fashion. As a result, the
algorithmic details of execution and contingency management
of the application become tangled with the core application
code, yielding software that is difficult to maintain, evolve,
verify, and certify. Application developers often put most of
the effort into development of the nominal modes of execution
of the algorithms. Abnormal conditions, however, typically
result in most of the improperly handled application failures.
Unfortunately, these abnormal conditions are rarely given
enough attention at the application development stage. One
of the reasons for it, as stated in [2], is simply that many
embedded applications operating under nominal conditions
are transformative in nature. Transformative systems are engi-
neered based on well established theoretical foundations and
formalisms. When anomalies caused by issues in distributed
communication environment beyond the control of develop-
ers arise, the transformative system must instantly become
reactive. Handling these reactive behaviors requires the use
of very different theoretical formalisms. Thus, to fully cover
all aspects of embedded system implementation, developers
are forced to blend drastically distinct formalisms of both
theoretical domains, which frequently proves to be highly
problematic.

In this paper, we propose an alternative approach to ad-
dressing this problem. We break down an embedded software
application into a core algorithm, a set of application-specific
contingency management routines, and an execution manage-
ment module that handles all aspects of middleware-based



information flows. The latter module orchestrates execution
and contingency management policies of the application. Thus,
the application core becomes completely decoupled from all
adverse effects of asynchronous data transports. The state
machine of the execution management module can be auto-
matically synthesized based on a system-level specification of
information flow types, namely mandatory vs. optional, and
periodic vs. aperiodic. This state machine can be translated
into executable code, which, together with the core algorithm,
yields a fully-functional, resilient application.

To the best of our knowledge, this is the first time an
automatic synthesis of this kind has been applied to the
embedded software application development domain. The
key benefit here is that embedded software developers can
limit their efforts to development of the core algorithms and
contingency management policies without the need to worry
about ensuring proper data integrity, or deciding when to
handle contingencies. This, in turn, yields much more concise,
simple, manageable, maintainable, and verifiable software with
promising potential to ease code certification.

This paper describes the problem in detail, presents an
algorithm for execution manager synthesis, and works through
a specific example developed in the Embedded Software inte-
gration Platform (ESiP) called Ensemble ESiP Toolbox. This
specification-driven embedded software integration automation
platform developed at GE Research is very well aligned
with the model-based, specification-centric embedded software
design philosophy of this paper.

II. PROBLEM DEFINITION

In this section, we define the synthesis problem in concrete
terms by introducing an illustrative example of a candidate
embedded application—a nonlinear state estimator based on
the Unscented Kalman Filtering (UKF) algorithm [3]. Such
an estimator is often encountered in control, optimization,
or diagnostics applications. It is particularly interesting to
us as it relies on reception of time-sensitive data. We begin
with a manual implementation of the UKF algorithm as a
microservice, highlighting the prime areas for automation. We
then restate the overall problem of this paper holistically and
describe the assumptions made in solving it. This leads directly
to the solution of this problem described in Section III.

A. Illustrative Example

Imagine we are developing an embedded system responsible
for solving a task of joint state and parameter estimation for a
nonlinear system. A deployment scenario for this application
could look like the illustration in Fig. 1 with systems as inter-
face entities rendered in a variant of the Interface Definition
Language (IDL) [4] binding for Unified Modeling Language
(UML) [5] deployment diagrams.

An embedded deployment environment provides schedul-
ing and message transport services. Systems are deployed
as standalone microservices publishing and subscribing to
message transport services thus forming distinct information
flows across their interface boundaries. An estimator named

UKFMicroservice is an embedded application subscribing
to input information flows including measurement, initializa-
tion, and plant information messages. These messages origi-
nate from different data providers (an instrumentation module
and settings and parameter database). The microservice is also
a producer of estimate data and linearized model information
for a controller module. Estimates are also fed back into a
settings database as a basis for future estimator initializations
(see Fig. 1).

Fig. 1. System and execution context of an estimation microservice in an
embedded deployment environment.

Using IDL binding for UML class diagrams, we can de-
scribe the various types of structured data that form the
messages in the information flow model above (see Fig. 2).
Readers familiar with recursive least squares estimation algo-
rithms will easily recognize and relate to the data structures
shown in Fig. 2. They represent the observation, estimation,
and correlation data commonly used in Bayesian estimation
approaches.1 Those interested in more in-depth treatment of
Bayesian estimation theory can refer to an excellent and very
accessible tutorial paper [6].

High-level design in Fig. 1–2 can be implemented in a
variety of different ways each of which has its own advantages
and drawbacks. We make use of Model-Based Design in
Simulink® [7] and automatic code generation using Embedded
Coder® [8] to realize the implementation of the estimator
microservice. A Simulink implementation of the estimator
microservice core is shown in Fig. 3.

In this implementation, a generic UKF estimator, abstracted
away from application-specific implementation details, is cou-
pled with plant dynamics modeled as a Simulink func-
tion model_dynamic_xKF with a standardized interface.
This pair of blocks interact with each other to produce an
application-specific implementation of the UKF estimator. In
addition to the UKF algorithm for state and parameter esti-
mation, this core module also calculates plant-specific linear

1In addition to common data entries, this data model also includes
some application-specific data structures (e.g., ModelMetaDataType,
PlantParamsType). Though relevant to implementation, they are not
pertinent to the discourse of this paper, and thus are omitted from the model.



Fig. 2. Data type definitions for estimator microservice data flows.

models at estimated state and parameter values to be used by
the optimizing controller, as illustrated in Fig. 1.

Fig. 3. Simulink® model of an estimator application core based on the
Unscented Kalman Filter algorithm.

Having defined an implementation of the core application
algorithm, we now need to add communication and execution
management layers to the microservice model to complete its
implementation. Here, as before, a great variety of approaches
is possible, and, as before, we use Model-Based Design in
Simulink to structure the microservice as shown in Fig. 4.

The UKF core model in Fig. 3 assumes a constant and
reliable presence of properly time-correlated data as its inputs
at all times, which cannot be guaranteed in distributed deploy-
ment environments. Thus, additional steps need to be taken to
preserve input data integrity given the sensitivity of Bayesian
estimators to coherency of input data. As seen in Fig. 4, inputs
are received, and outputs are transmitted, as messages from/to
middleware connectivity blocks commonly referred to as data
subscribers and publishers. In addition to actual data required
by the core estimation algorithms, middleware connectivity

layers need to provide communication status and integrity
metadata, which predictably encodes the statuses of transport
layer connectivity and message reception for data publishers
and subscribers.

Assuming availability of this additional information from
the transport connectivity layer, we can build an execution
manager algorithm that enables the execution of the UKF core
only when input data integrity is assured, and that ensures
transmission of output data only when it is appropriate. In
our example we use a Stateflow® [9] chart to implement the
algorithm of this execution manager (see Fig. 4).

A sample pseudo implementation of the execution manager
algorithm is shown in Fig. 5. Microservice designers must
be able to enable correct operation of the estimator under
nominal conditions as well as properly handle all possible
data transport-induced contingencies, such as absence of con-
nectivity, absence of initialization information, and delays in
measurement data. A more sophisticated implementation of
this microservice will likely include additional intricacies, but
for the purpose of our illustrative example it is quite adequate
to identify these three.

The state machine in Fig. 5 has been simplified to show
only the details relevant to the big picture. Once an appli-
cation starts up, the execution manager needs to ensure that
data transport connectivity is properly established. If not, a
specific contingency management action must be taken. In
this illustrative example, the chosen contingency management
routine for all the contingencies simply waits for a timeout
and terminates the application if the situation does not resolve
itself before timeout occurs. In practice, a more sophisticated
management routine may be implemented.

Once the connectivity is established, the execution manager
needs to correctly initialize the UKF, as improper initialization
may lead to a prohibitively long convergence time. Absence of
initialization data is therefore viewed as another contingency
our execution manager must manage. Otherwise, after correct
initialization, we can advance the application state by execut-
ing the core with properly sampled input measurements. If a
measurement message is not received, yet another contingency
arises. We assume that the Stateflow implementation properly
extracts information payloads from all messages and feeds
correct data structures into the algorithm core block (this part
is not shown on the pseudo implementation Fig. 5).

We must observe that it is critical, whether relying on
Model-Based Design principles in Simulink or any other tool,
or using any other design and implementation paradigm, to
adhere to the two most fundamental principles of software
engineering—abstraction and encapsulation. This enables a
clear separation of concerns of individual system components,
and lets the designer fix some implementation aspects, while
varying others to improve the overall quality and robustness of
the implementation. As we will see in Section III, this separa-
tion is fundamental to our approach. It allows us to introduce
a considerable amount of automation and code synthesis of
the state machine that represents the microservice execution
manager. Such automation relieves embedded system develop-



Fig. 4. Simulink® model of a microservice of an embedded estimator application based on Unscented Kalman Filter algorithm.

Fig. 5. Pseudo statechart representing a possible manual implementation of the microservice Execution Manager.

ers from the burden of developing complex logic for tracking
status and integrity of input data. Developers need to only
invest effort and time in developing the algorithmic core and
handling any possible contingencies. A solid design combined
with a clearly-defined specification of the microservice I/O
structure will enable state machines such as the one shown in
Fig. 5 to be generated fully automatically.

B. Problem Statement and Assumptions

The illustrative example from Fig. 4 is now generalized into
one of the fundamental postulates of our approach. Namely,
that any embedded software application can be broken down
into four mutually independent sets of components:

• a set of middleware connectivity modules (publishers and
subscribers) for incoming and outgoing information flows
of the application,

• a core algorithm implementation module,
• an execution manager state machine, and
• a set of contingency management routines tailored to

specific issues that could arise in an asynchronous com-
munication environment.

The interfaces of components in the above sets can be
defined such that their implementations become fully encap-
sulated and independent from each other. In that case, an
embedded application can be fully specified by three types
of artifacts:

• an implementation of the application core algorithm,
• an implementation of the set of contingency management

routines, and
• a formal application interface specification linking ap-

plication information flows to corresponding contingency
management routines.

The final integration of all components of the embedded ap-
plication can then be fully automated using these three artifact
types as a starting point. In this paper, we consider only one
step of this automation—synthesis of the execution manager
state machine using the application interface specification.

Our approach is based on the set of the following assump-
tions:

• Fixed time step algorithm execution—a single application
code iteration as well as any execution and contingency
management routines fully complete within a single ex-



ecution time step.
• Asynchronous information flow—processes governing in-

formation delivery to applications are independent of the
application execution timing.

• Applications are responsible for determining incoming
information validity, recency, timing relationships with
the algorithm state, and actions to be taken in response
to the information flow.

• Information flows are message-based. Messages received
by the applications contain payload and metadata. Pay-
load contains application-specific data. Metadata includes
standardized information related to middleware connec-
tivity status, quality of service, recency, validity, period-
icity, etc.

The assumptions above define a specific framework within
which the problem will be examined. Additionally, we assume
that incoming information flows of an embedded application
can be categorized as:

• periodic (expected to arrive at fixed, predetermined time
intervals allowing for some deterministic or stochastic
jitter) or aperiodic (expected to arrive at arbitrary points
in time), and

• optional (application will execute normally even in the
absence of these incoming messages) or mandatory (ap-
plication cannot execute normally in the absence of the
incoming messages).

These simplifying assumptions from this preliminary study
would need to be relaxed in future work to include a more
complete and thoroughly developed model of asynchronous,
middleware-based information exchange, especially including
various quality of service modes offered by many middleware
implementations.

III. EXECUTION MANAGER SYNTHESIS ALGORITHM

As described in Section II-B, we categorize the types of
information flows produced and consumed by an embedded
system as:

• mandatory periodic—flows in which information is
expected to arrive and depart at specific time intervals and
for which absence of information arrival and departure at
expected point in time requires contingency management;

• mandatory aperiodic—flows that are expected to arrive
and depart at least once in the lifetime of an application
and absence of information from these flows requires
contingency management;

• optional periodic—supplementary flows for an applica-
tion that are expected to arrive in periodic sequences;

• optional aperiodic—same as previous, but no periodicity
is implied.

For the last two categories of flows, contingency management
requirements are typically narrowed in scope to simple notifi-
cation of the status of the information flow and do not involve
suspending application core execution process.

Each of these four categories of information flows can be
associated with an elementary state machine addressing their

respective requirements. These elementary state machines are
illustrated in Fig. 6–9. Specifically, the mandatory periodic
flow scenario can be handled by the state machine in Fig. 6.
At the start of the application, the sate machine analyzes
the transport connectivity information and verifies that the
connectivity is valid, that is, the reception or transmission
is occurring. If not, a user-defined contingency management
routine is invoked. This routine may establish that the con-
tingency has been properly addressed or may issue a timeout.
If resolved, the transport status checks are repeated. If timed
out, the application is terminated. If all status flags are in order
and information flow is successful, a nominal execution state
is entered where the application core can be executed. After
each step of application core execution, transport status must
be re-verified. In the context of our example from Section II-A,
the measurement data stream for the UKF should be handled
in this fashion.

Fig. 6. Elementary state machine for mandatory periodic information flows.

The elementary state machine for the mandatory aperiodic
flow type is shown in Fig. 7. It is fundamentally similar to
Fig. 6 except that once the state machine enters its nominal
operation state, it can stay there throughout the life cycle
of the application. In the context of our UKF example, the
initialization and plant info data streams fall into this category.
The UKF algorithm must receive each at least once in order
to proceed. It may receive them more than once, but at least
once is required for operation.

Fig. 7. Elementary state machine for mandatory aperiodic information flows.

Finally, execution managers for optional information flows
can be modeled as state machines in Fig. 8–9. The same princi-
ples apply here except we do not define explicit contingency
states and implement the calls to contingency management
routines as part of the state machine transition logic. In the
context of the UKF example we can view outputs of the system
(Estimates and LinModelInfo) as optional periodic



information flows. The core algorithm generates this data at
every execution step and publisher blocks make an attempt to
publish these structures. If the publication is unsuccessful for
some reason (e.g., because of connectivity or communication
problems), appropriate status values may be fed back into the
state machine. The expected behavior is up to the application
designer. Here, for example, we continue application execution
calling our contingency management routine as a notification
callback every time a transmission problem occurs. This mode
of operation fits the optional periodic model.

Fig. 8. Elementary state machine for optional periodic information flows.

Fig. 9. Elementary state machine for optional aperiodic information flows.

We postulate that a holistic solution to a problem of
execution manager synthesis for an embedded application is
essentially the problem of composing a set of elementary state
machines covering specifications of all incoming and outgoing
information flows of that application. Here we propose and
notionally describe such an algorithm. In Section IV, we show
how an execution manager for our UKF microservice example
can be synthesized by this algorithm.

The state machines in Fig. 5–9 have been defined using the
classical Moore/Mealy automata formalisms (see [10], [11]).2

It is possible to derive the algorithm that combines elementary
state machines associated with application information flows
into a single sequential state machine handling all necessary
cases. It is, however, rather impractical to do so since in
general such a state machine may contain a very large number
of states for applications with many information flows. The
modern Harel statechart framework [2] combines Mealy and
Moore formalisms and adds parallelism in execution. It also
allows for parallel state machines to dynamically exchange

2Strictly speaking, in Fig. 8–9 we intentionally blend Mealy and Moore
notations by allowing state machine actions as part of state transition logic to
maintain compactness.

information. Using the Harel statechart framework, the algo-
rithm for synthesizing a complete execution manager can be
simply expressed as a three-step process:

1) combining all elementary state machines for all infor-
mation flows in a single statechart with parallel decom-
position,

2) extracting the core algorithm execution step into a
separate concurrent statechart, and

3) establishing conditional logic and an event structure for
allowing the two resulting statecharts to interoperate.

Section IV provides a detailed illustration of how this
notional algorithm description can be used to synthesize an
execution manager for the UKF estimation microservice.

IV. ESTIMATION MICROSERVICE REVISITED

We now show how to apply the automated synthesis con-
cept from Section III to the example embedded application
described in Section II-A. We will examine this state machine
synthesis task in the context of a much larger design automa-
tion framework. This frameworks aims at the following:

• enabling rapid and effective ways to design, integrate, test
and deploy embedded software,

• maximizing development productivity using
specification-based model synthesis and automatic
code generation, and

• establishing a process workflow for reinforcing devel-
opmental discipline and team productivity via rigorous
specification modeling, Model-Based Design as well as
early and frequent software and system integration.

We first briefly introduce this framework and provide a spec-
ification of the UKF estimator microservice to be utilized by
the framework. We then present and discuss the execution
manager state machine for our example application as it will
be generated by the framework.

A. Brief Introduction to Ensembele ESiP Toolbox

Ensemble ESiP Toolbox is a tool developed by GE Research
to drastically increase productivity of embedded software
development teams through maximum use of automation. The
tool showcases the following innovations:

• It combines development, test, integration, and deploy-
ment into a single, cohesive, high-productivity workflow.

• It offers the ability to deploy software in a modularized
format on heterogeneous, multi-platform deployment en-
vironments.

• It introduces a new declarative specification language for
embedded software and system definition. The toolbox
uses system specifications in this format to automate
model and code generation for all software components,
alleviating the need for re-implementing known and well-
established functionality.

• It establishes a flexible information exchange infrastruc-
ture interface using message API allowing embedded
applications to be easily configured to use a variety of
interchangeable and extensible data transports.



The typical workflow of the toolbox is conceptually illus-
trated in Fig. 10. The development team is expected to supply
a detailed system specification describing what embedded soft-
ware applications constitute the system definition. In addition,
build and deployment configuration of the system is specified.
It includes, among other things, detailed data type definitions
of all information flows accross all component boundaries
as well as types of middleware utilized for deployment. The
development team is also expected to provide implementations
of application-specific core algorithmic components as well
as all application-specific contingency management routines.
The Embedded Software Component Factory processes all
these input artifacts, matches I/O specifications with available
middleware and data transport libraries and generates a fully
integrated system test harness as well as deployable microser-
vice models such as the one illustrated in Fig. 4.

Fig. 10. Ensemble ESiP Toolbox simplified workflow.

Auto-generated build and test artifacts serve as inputs to the
automated code generation suite, which builds and integrates
the microservice models into target platform specific exe-
cutables. An optional configuration step allows the toolchain
to containerize the applications for deployment in container-
based deployment environments. Next, we show how this
toolchain can be applied to synthesis of the UKF estimation
microservice defined in Section II-A.

B. Synthesis of Estimation Microservice

To synthesize a UKF estimation microservice with the
Ensemble ESiP Toolbox, we need to develop a data type
definition specification for all information flows illustrated in
Fig. 1. The UML model of this specification is shown in Fig. 2
and Ensemble ESiP Toolbox provides a utility to import UML
models in a standard XMI format and convert them to an IDL
data type definition per specification [4]. For our example,
such a data type definition specification looks as follows:
struct PlantInfoType {

PlantMetaDataType configInfo;
PlantParamsType params;

};
struct LinModelInfoType {

LinModelType Linmodel;
ModelMetaDataType ModelSpecificData;
double X_estim[Nx];

};

struct EstimatesType {
double covX[Nx + Np][Nx + Np];
double p_hat[Np];
double p_hatsat[Np];
double x_hat[Nx];
double x_hatsat[Nx];
double Y_hat[Ny];

};
struct InitializationType {

double covX_init[Nx + Np][Nx + Np];
double p_init[Np];
double U_init[Nu];
double x_init[Nx];

};
struct MeasurementsType {

double Umeas_k[Nu];
double Ymeas_k[Ny];

};

The second necessary artifact is the system and build config-
uration specification. Ensemble ESiP accepts this specification
in multiple formats (XML, JSON, YAML, MATLAB® code,
XMI, and others). A simplified version of this specification in
YAML is as follows:
system:

name: UKFDeploymentEnvironment
modules:

- name: InstrumentationModule
ioDescriptors:
- name: Measurement
ioType: OUTPUT
idlDataType: MeasurementsType

- name: SettingsDataBase
ioDescriptors:
- name: PlantInfo
ioType: OUTPUT
idlDataType: PlantInfoType

- name: Initialization
ioType: OUTPUT
idlDataType: PlantInfoType

- name: PlantInfo
ioType: INPUT
idlDataType: PlantInfoType

- name: Controller
ioDescriptors:
- name: LinModelInfo
ioType: INPUT
idlDataType: LinModelInfoType

- name: Estimates
ioType: INPUT
idlDataType: EstimatesTypeType

- name: UKFMicroservice
srcName: UKFMicroserviceImpl.mdl
buildConfig:
srcFormat: SIMULINK_MDL
contingencyManagers:

- contingencyManager:
name: wait_with_timeout
srcName: wait_with_timeout.m
buildConfig:

srcFormat: MATLAB_FCN
io:
- Measurement
- Initialization
- PlantInfo
- LinModelInfo
- Estimates

ioDescriptors:
- name: Measurement
ioType: INPUT
idlDataType: MeasurementsType
optional: false
periodic: true

- name: Initialization
ioType: INPUT
idlDataType: PlantInfoType
optional: false
periodic: false

- name: PlantInfo
ioType: INPUT



idlDataType: PlantInfoType
optional: false
periodic: false

- name: LinModelInfo
ioType: OUTPUT
idlDataType: LinModelInfoType
optional: true
periodic: true

- name: Estimates
ioType: OUTPUT
idlDataType: EstimatesTypeType
optional: true
periodic: true

The spec above is basically an extension and generalization
of the system and execution context definition from Fig. 1.
It defines a UKFDeploymentEnvironment system con-
sisting of four independently deployable application mod-
ules. The first three, namely InstrumentationModule,
SettingsDataBase, and Controller serve to define
execution, test, and evaluation contexts of our main module
named UKFMicroservice. Specification of the modules
serving as the execution context are defined in an abbreviated
form, whereas the definition of the UKFMicroservice
module itself is provided in more detail.

The core algorithm of the UKF microservice is provided
by a Simulink model UKFMicroserviceImpl.mdl shown
in Fig. 3. Specification of information flows is given in the
ioDescriptors section. It includes three inputs and two
outputs. For simplicity, we omit deployment configuration
parameters that specify middleware bindings for each IO flow.
Ensemble ESiP Toolbox uses RTI DDS [12] as a default
transport if explicit specification is omitted. Each IO descriptor
defines what category the IO flow belongs to. As one can see,
we have one mandatory periodic, two mandatory aperiodic,
and two optional periodic flow definitions. Contingency man-
agers are defined in a separate portion of the module build
configuration. We define a single contingency manager routine
associated with all five information flows. In practice, however,
one may define separate contingency managers for inputs
and outputs, or for each individual category of information
flows. The contingency manager is a MATLAB function in the
file wait_with_timeout.m. The implementation of this
function is omitted here, as it is expected that the developer
will provide it.

The four artifacts described above serve as input artifacts
for the Embedded Software Component Factory of the En-
semble ESiP Toolbox shown in Fig. 10. It produces, among
other things, a fully functional UKF microservice model with
correct middleware connectivity bindings, execution manager
structures, and linkage to algorithm core and contingency
management routines. Fig. 4 shows the result of this automatic
synthesis process.

The resulting execution manager state chart structure is
shown in Fig. 11. Synthesis of this Stateflow chart fol-
lows the algorithm notionally defined in Section III. In-
dividual state machines handling specific IO flows are
combined together through parallel decomposition in a
single ExecManager chart. MeasurementManager is
a detailed realization of the notional definition of the

state machine in Fig. 6. InitializationManager and
PlantInfoManager implement the state machine in Fig. 7.
Finally, EstimatesManager and LinModelManager
implement the state machine shown in Fig. 8.

Each state machine in the ExecManager chart monitors
the status and connectivity information of its information flow
and is responsible for deciding if the application should be in
nominal or contingency mode. Statechart CoreExector is
a result of steps 2 and 3 in the algorithm from Section III. It
consists of only the functionality of calling the core routine,
separated from all the other logic of execution management.
It implements simple voting logic on the nominal state flags
from ExecManager, transitions into the ExecCore state
when appropriate, calls the core algorithm routine to compute
current estimates of the UKF, sends messages with output
payloads out to data publishers, and sends a notification event
back to ExecManager to resume information processing.
Figure 11 captures the state machine in action in its nominal
state executing UKF core function.

V. CONCLUSION

This paper presents a preliminary study of one of the
steps in automating embedded software application design,
development, and deployment. This step is responsible for
correctly and robustly handling anomalies induced by the
nature and complexities of distributed communication in the
application execution context. We show that, to some extent,
the difficulties of synthesizing a reactive embedded application
around a transformative core can be addressed through good
understanding of the nature of the deployment environment,
competent design, and automation. To that end, this paper pre-
sented and analyzed a framework that offers potential solution
to this problem. Despite the many simplifying assumptions
in our reasoning and arguments, it is our hope that this idea
is viewed as promising and that the software community
considers building upon it to further improve and simplify the
development process.

One obvious area of improvement would be to augment
the approach we described with existing middleware Quality
of Service (QoS) models. This may be a nontrivial task in
general as QoS models vary greatly across different middle-
ware implementations. Another area of improvement would
include a critical look at our information flow categoriza-
tion model presented in Section III. A more complete and
accurate model can be derived by refining the quality of
the final execution manager structure. Another improvement
would involve studying the cross-coupling effects of different
contingencies and understanding how they may affect each
other in a simultaneous multiple-fault scenario. Yet another
area of improvement might include structural optimization
of the execution managers in order to potentially reduce the
number of states and transitions in the final state machine
and to simplify the logic. Finally, a big challenge would
be to examine verification, validation, and safety certification
aspects of the code generated using this approach.



Fig. 11. UKF example execution manager statechart synthesized based on the developed algorithm.

Over the past few decades, development of software, es-
pecially embedded software, has dramatically increased in
complexity and cost. Developers are often expected to have
both depth and breadth of knowledge in a wide variety of areas
of theory and practice in order to succeed in their product
design and deployment. Often this burden proves to be too
much. The work presented here aims at finding creative and
competent ways of using automation to help development
teams keep up and stay in their primary domain of expertise,
while automating as many aspects of the development and
deployment processes as can possibly be automated. This, in
our opinion, is the main contribution of this paper.

ACKNOWLEDGMENT

Authors would like to thank Dr. Aditya Kumar and Dr.
Mustafa Dokucu of GE Research for sharing the Unscented
Kalman Filtering estimation core shown in Fig. 3 and extracted
from GE Research Estimation and Controls design library.

REFERENCES

[1] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert, “Mi-
croservices,” IEEE Software, vol. 35, no. 3, pp. 96–100, 2018.

[2] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.

[3] E. A. Wan and R. Van Der Merwe, “The Unscented Kalman Filter for
nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive Sys-
tems for Signal Processing, Communications, and Control Symposium,
2000, pp. 153–158.

[4] “Interface Definition Language (IDL) version 4.2,” Object
Management Group (OMG), Standard, Mar. 2018. [Online]. Available:
https://www.omg.org/spec/IDL/4.2

[5] “Unified Modeling Language (UML) version 2.5.1,” Object
Management Group (OMG), Standard, Dec. 2017. [Online]. Available:
https://www.omg.org/spec/UML/2.5.1

[6] A. H. Sayed and T. Kailath, “A state-space approach to adaptive RLS
filtering,” IEEE Signal Processing Magazine, vol. 11, no. 3, pp. 18–60,
1994.

[7] MathWorks®, “Simulink® R2019b,” September 2019. [Online].
Available: https://www.mathworks.com/products/simulink.html

[8] MathWorks®, “Embedded Coder® R2019b,” September 2019. [Online].
Available: https://www.mathworks.com/products/embedded-coder.html

[9] MathWorks®, “Stateflow® R2019b,” September 2019. [Online].
Available: https://www.mathworks.com/products/stateflow.html

[10] E. F. Moore, “Gedanken-experiments on sequential machines,” in Au-
tomata Studies, Annals of Mathematical Studies. Princeton, NJ:
Princeton University Press, 1956, vol. 34, p. 129–153.

[11] G. H. Mealy, “A method for synthesizing sequential circuits,” Bell
System Technical Journal, vol. 34, pp. 1045–1079, 1955.

[12] Real-Time Innovations (RTI), “Connext DDS 6,” April 2019. [Online].
Available: https://www.rti.com/products


