# Investigation of Formal Verification for Self-Healing Analog/RF Systems

C2S2

C2S2



## A. Rajhans, M. Althoff, B. Krogh, L. Pileggi, X. Li **Carnegie Mellon University**

Verify locking



| ANALYSISTASK                                        | ANALYSIS METHOD                       |
|-----------------------------------------------------|---------------------------------------|
| Analysis of a single operating point                | Simulation                            |
| Analyze the correctness of design                   | Simulate one particular behavior      |
| Analysis with process variations                    | Monte Carlo simulation                |
| Analyze robustness against process variations       | Simulate many behaviors               |
| Analysis over complete post-silicon<br>tuning range | Formal verification?                  |
| Determine whether there are                         | State space too large for simulation! |

#### How we can use formal verification



## **Target application: self-healing PLL**







## Verification approach



## Verification using reachability analysis

General approach

Compute the set of all behaviors (not one-by-one)

for a range of initial conditions and a range of possible dynamics



If reachable set is hard to compute (typically the case)

over-approximate the set using polyhedra



## C2S2

## Challenges in reachability analysis

#### Hybrid dynamics

- Verification complexity exponential in the number of continuous state variables for polyhedral computations
- With zonotope (polyhedra with special structure) computations\*, there's major speed-up in continuous reachability (cubic complexity); but complexity still exponential for hybrid dynamics

#### Very long transient

C2S2

Thousands of discrete transitions; over-approximation becomes less accurate with each discrete transition

#### Liveness specification (locking)

Need to verify indefinite (infinite-time) behavior

Over-approximation grows with time

\* Antoine Girard, Reachability of Uncertain Linear Systems Using Zonotopes. HSCC 2005

## **Transient verification using CORA\*** Fighting excessive growth of the reachability tree









## Invariant verification using PHAVer\*

- PHAVer (Polyhedral Hybrid Automaton Verifier)
  - Uses exact rational arithmetic up to arbitrary precision.
  - Supports forward and backward reachability computation.

## Next Steps

- Completion of invariant and transient verification
- More detailed model including
  - Charge pump saturation

## Transient verification using CORA

However, needs to overapproximate linear dynamics by (even simpler) piecewise constant bounds on derivatives.

#### Reachability analysis with cycle unwrapped



- VCO nonlinearity
- Compositional verification: digital-analog decoupling





2010 Annual Review