
http://www.c2s2.org

2010 Annual Review

Investigation of Formal Verification for
Self-Healing Analog/RF Systems

A. Rajhans, M. Althoff, B. Krogh, L. Pileggi, X. Li

Carnegie Mellon University

Motivation for formal verification

ANALYSIS TASK ANALYSIS METHOD

Analysis of a single operating point Simulation

Analyze the correctness of design Simulate one particular behavior

Analysis with process variations Monte Carlo simulation

Analyze robustness against process

variations

Simulate many behaviors

Analysis over complete post-silicon

tuning range

Formal verification?

Determine whether there are

acceptable solutions in the tuning

range

State space too large for simulation!

Verify all possible behaviors of a

reasonably accurate behavioral model

How we can use formal verification

Verification-aided design of self-tuned components

Create a behavioral model

Good
Model satisfies

specification?

Self-tuned

component
Correctness

requirement

Bad

Behavioral

model
Behavioral

specification

No

Yes

Formal verification

e.g. self-healing PLL e.g. successful locking

Reasonably

accurate abstraction
of the real circuit

Reasonable assurance of

correctness within the
accuracy provided by the

behavioral model

e.g. what successful

locking would mean in
the behavioral model

Bad design w.r.t. the

correctness requirement
(e.g. some behaviors don’t

satisfy locking spec.)
Need to catch this!

Target application: self-healing PLL

Verify locking

behavior over

 arbitrary initial states

 range of parameter

values

 with self-healing

logic

Behavioral model

 Continuous state
variables: ©ref , ©v , Vi ,

Vp1 , Vp

 Discrete switching

due to charge pump

operation PLL w/o self-healing logic

Simulation of the behavioral model

both_active

dn_active

none_active

v co lags

up_active

v co leads

vp1

vp

Simulink/Stateflow model

vp

vi

¢Á

cycles

initial transient

¢Á locked

cycles

p
h

a
s
e

 d
if

fe
re

n
c
e

 (
d

e
g

re
e

s
)

¢Á

Transient

ref. cycles

Verification approach

Transient verification

 Bounded-time verification of

whether all behaviors enter the

invariant target

Invariant verification

 Identify regions of state space

that guarantee staying in the

limit indefinitely

 This becomes a target set for

transient verification

¢Á

ref. cycles

Invariant Indefinite
Allowed ¢Á

Allowed ¢Á

Decompose the locking specification into two parts

Verification using reachability analysis

General approach

Compute the set of all behaviors (not one-by-one)

 for a range of initial conditions and a range of possible dynamics

 If reachable set is hard to compute (typically the case)

 over-approximate the set using polyhedra

Initial set

Individual behaviors

Unwanted behavior

“Reachable” set:

Set of all possible behaviors

Initial set

Individual behaviors

Overapproximation

of the reachable set

Unwanted behavior

Challenges in reachability analysis

Hybrid dynamics

 Verification complexity exponential in the number of continuous

state variables for polyhedral computations

With zonotope (polyhedra with special structure) computations*,

there’s major speed-up in continuous reachability (cubic

complexity); but complexity still exponential for hybrid dynamics

Very long transient

 Thousands of discrete transitions; over-approximation becomes

less accurate with each discrete transition

Liveness specification (locking)

 Need to verify indefinite (infinite-time) behavior

 Over-approximation grows with time

* Antoine Girard, Reachability of Uncertain Linear Systems Using Zonotopes. HSCC 2005

Transient verification using CORA*
Fighting excessive growth of the reachability tree

Áref

Áv

(one cycle)

When PLL is far from locking

(one cycle)
Áref

Áv

When PLL is close to locking

* CORA : COntinuous Reachability Analyzer. Althoff, M. Reachability Analysis and its Application to the Safety Assessment of Autonomous Cars, TU München, 2010

both_active

dn_active

none_active

vco lags

up_active

vco leads

Discrete transition graph: a single branch

Discrete transition graph: rapidly growing tree New solution with merging of paths

Transient verification using CORA

Overapproximation using a single zonotope

Tighter overapproximation using multiple intersecting zonotopes

vp1

vp vp

vi

Making guard set overapproximations tighter

Reachable set using

zonotopes

Overapproximate using

polytopes

Overapproximate the

intersection with a zonotope
Overapproximate using

multiple intersecting zonotopes

Improvement

Tighter reachable set

after improvement

Reachable set

without improvement

Tighter reachable set

after improvement

Reachable set

without improvement

Reachability analysis results for first 50 cycles of ref.

Simple

overapproximation

Improved

overapproximation

Invariant verification: Forward-backward iteration

Unsafe

Un-cyclicInitial Set

Target Set

1. Forward reachability
Check for unsafe/uncyclic behavior

2. Backward reachability
Find unsafe/uncyclic part of initial set

3. Forward reachability
Exclude unsafe/uncyclic initial set,

update target set, continue…

none_active
Inv: -1· vp1, vp, vi · 1 &

0· Áref ,Áv · 1

Dyn: 63*vp1′ = -1450*vp1+1250*vp &

2*vp′ = 125*vp1-125*vp &
40*Áv′ =vp+8*vi+1080 &

timer ′ =0 & Áref′ =27& vi′=0
up_active

Inv: -1· vp1, vp, vi · 1 &

0· Áref · 1 & -1 · Áv · 0

Dyn: 63*vp1′ = -1450*vp1+1250*vp +5000 &

2*vp′ = 125*vp1-125*vp &
40*Áv′ =vp+8*vi+1080 &

timer ′ =0 & Áref′ =27& 5*vi′=2

both_active
Inv: -1· vp1, vp, vi · 1 &

0· Áref ,Áv · 1 & timer ¸ 0

Dyn: 63*vp1′ = -1450*vp1+1250*vp &

2*vp′ = 125*vp1-125*vp &
40*Áv′ =vp+8*vi+1080 &

timer ′ = -1 & Áref′ =27& vi′=0

dn_active
Inv: -1· vp1, vp, vi · 1 &

0· Áv · 1 & -1 · Áref · 0

Dyn: 63*vp1′ = -1450*vp1+1250*vp -5000 &

2*vp′ = 125*vp1-125*vp &
40*Áv′ =vp+8*vi+1080 &

timer ′ =0 & Áref′ =27& 5*vi′= -2

copy_of_ none_active
Inv: -1· vp1, vp, vi · 1 &

0· Áref ,Áv · 1

Dyn: 63*vp1′ = -1450*vp1+1250*vp &

2*vp′ = 125*vp1-125*vp &
40*Áv′ =vp+8*vi+1080 &

timer ′ =0 & Áref′ =27& vi′=0

Initial_set
Target set = copy_of_Initial_set

Original automaton With cycle unwrapped

Guard: Áref =1

Guard: Áv =1

Guard: Áv =0

Guard: Áref =0

Guard: timer=0

Reset: Áref = 0

Áv = Áv -1

Reset: Áv = 0

Áref = Áref -1

Reset: timer = 50¹

Reset: timer = 50¹

Forward-backward reachability iteration

Invariant verification using PHAVer*

PHAVer (Polyhedral Hybrid Automaton Verifier)

 Uses exact rational arithmetic up to arbitrary precision.

 Supports forward and backward reachability computation.

 However, needs to overapproximate linear dynamics by (even

simpler) piecewise constant bounds on derivatives.

Reachability analysis with cycle unwrapped

none_active

copy_of_none_active

Initial set

up_active

dn_active

Final set

Challenge with PHAVer implementation:
When already locked, charge pumps active for a very short fraction of time.

Overapproximation wider than contraction due to charge pump action.

* Goran Frehse, PHAVer: algorithmic verification of hybrid systems past HyTech. STTT 10(3): 263-279 (2008)

Áref

Ávco

Next Steps

Completion of invariant and transient verification

More detailed model including

 Charge pump saturation

 VCO nonlinearity

Compositional verification: digital-analog decoupling

analog (continuous/hybrid)digital

Provides quick insight about the behavior, but can only simulate one behavior at a time.

Over a wide range, need to simulate many behaviors one-by-one. This is costly.

