
Hybrid System Falsification using
Monte Carlo Tree Search (Abstract)
Zhenya Zhang1, Gidon Ernst2, Sean Sedwards3, Paolo Arcaini1, Ichiro Hasuo1

1National Institute of Informatics 2LMU Munich 3University of Waterloo
{zhangzy, arcaini, hasuo}@nii.ac.jp gidon.ernst@sosy.ifi.lmu.de sean.sedwards@uwaterloo.ca

Quality assurance of Cyber-Physical Systems (CPS)
is drawing more and more attention from both academia
and industry, not only because it is safety-critical, but it
is also a challenging problem. Formal verification tech-
niques based on system state exploration are infeasible
to CPS due to its hybrid nature in which both dis-
crete and continuous dynamics exist, and thus the state
space is infinite. In contrast, testing techniques, namely
falsification, which aims at finding a counterexample
to refute a system specification, are well adapted for
hybrid systems. Falsification problem can be illustrated
as Fig. 1. M is the system model, u is an input signal
for M, and ϕ is a pre-defined system specification
expressed in Signal Temporal Logic (STL) [1]. The goal
of the problem is to find an input signal u such that the
corresponding output signal M(u) violates ϕ.

Multi-Armed Bandits for Boolean Connectives in
Hybrid System Falsification

No Author Given

No Institute Given

Abstract. Hybrid system falsification is an actively studied topic, as a scalable
quality assurance methodology for real-world cyber-physical systems. In falsifi-
cation, one employs stochastic hill-climbing optimization to quickly find a coun-
terexample input to a black-box system model. Quantitative robust semantics is
the technical key that enables use of such optimization. In this paper, we tackle the
so-called scale problem regarding Boolean connectives that is widely recognized
in the community: quantities of different scales (such as speed [km/h] vs. rpm, or
worse, rph) can mask each other’s contribution to robustness. Our solution con-
sists of integration of the multi-armed bandit algorithms in hill climbing-guided
falsification frameworks, with a technical novelty of a new reward notion that we
call hill-climbing gain. Our experiments show our approach’s robustness under
the change of scales, and that it outperforms a state-of-the-art falsification tool.

Keywords: signal temporal logic, cyber-physical systems, falsification, Boolean
combination, reinforcement learning

1 Introduction

Hybrid System Falsification Quality assurance of cyber-physical systems (CPS) is at-
tracting growing attention from both academia and industry, not only because it is
challenging and scientifically interesting, but also due to the safety-critical nature of
many CPS. The combination of physical systems (with continuous dynamics) and dig-
ital controllers (that are inherently discrete) is referred to as hybrid systems, capturing
an important aspect of CPS. To verify hybrid systems is intrinsically hard, because the
continuous dynamics therein leads to infinite search spaces.

More researchers and practitioners are therefore turning to optimization-based falsi-
fication as a quality assurance measure for CPS. The problem is formalized as follows.

The falsification problem

– Given: a model M (that takes an input signal u and
yields an output signal M(u)), and a specification ' (a
temporal formula)

– Find: a falsifying input, that is, an input signal u such
that the corresponding output M(u) violates '

u // M
M(u)

6|=' ?
//

In optimization-based falsification, the above problem is turned into an optimization
problem. It is robust semantics of temporal formulas [10, 13] that makes it possible.

Fig. 1: Falsification

A typical way of solving
falsification problems is based
on the so-called hill-climbing
optimization technique which
aims at finding an input that
minimizes the objective function. The objective function
here is called robustness, ranging over real numbers,
as defined in the robust semantics [2] of STL. The
intuition of robustness for an output signal w related to
ϕ reflects how robustly w satisfies ϕ: a larger positive
value means that w is less vulnerable to violating ϕ,
while a negative value means that w already violates ϕ.
There have been several mature tools based on this idea,
such as Breach [3], S-TaLiRo [4], in which hill-climbing
optimization algorithms, like CMA-ES, Simulated An-
nealing, etc., are employed for falsification.

MONTE CARLO TREE SEARCH AND FALSIFICATION

Hill-climbing optimization based falsification tech-
niques, however, may easily fall into the “local op-
timum” trap and thus fail to falsify the specification.
That is because most hill-climbing algorithms focus on
exploitation of local optimum too much, ignoring the
existence of global optimum elsewhere. A technique that
helps to jump out from the trap is needed.

Z. Zhang, P. Arcaini, and I. Hasuo are supported by ERATO HASUO
Metamathematics for Systems Design Project (No. JPMJER1603), JST.

MCTS  
Optimization

Hill-Climbing  
Optimization

Search  
region

(, 5.2)
Concrete input  

(red dot)
and reward

Fig. 2: A two-layered framework: MCTS for global
guidance, and hill climbing for local search

Monte Carlo Tree Search (MCTS) [5] is an advanced
artificial intelligence technique that balances exploration
and exploitation in search-based testing problems. It has
achieved a great success in computer-Go games where
a globally optimal strategy is needed.

MCTS follows a 4-step strategy:
• Selection: start from the root R of a tree and select

successive child nodes until a leaf is reached.
• Expansion: create a node N to expand the search.
• Playout: randomly select child from node N to

complete the game and record a binary result.
• Backpropagation: update the number of wins and

visits of each node on the path from N to R based
on the playout result.

MCTS iteratively applies the 4 steps to update the
winning rate (called as reward) of one path. In order
not to bias local exploitation too much, MCTS employs
UCB1 (Upper Confidence Bound), where the number of
visits to a given branch is also considered, to balance
the exploration and exploitation during the search.

In this work, we borrow the idea of MCTS and build
a two-layered framework as Fig. 2 shows. On the high
level, MCTS globally guides the search by figuring out a
promising direction; then, on the low level, hill-climbing
optimization is employed in the local search to dig out
a concrete solution in the direction given by MCTS.

The technical details follow [6].We divide the time
bound of a signal into n intervals. Then we discretize
the search space on each interval by partitioning it into
m sub-spaces. A tree T , of depth n and degree m, is
built accordingly. Starting from the root R, we follow

TABLE I: Experimental results

AT model AFC model FFR model

S1 S2 S3 S4 S5 Sbasic Sstable Strap
Algorithm succ. time succ. time succ. time succ. time succ. time succ. time succ. time succ. time

Random 10/10 108.9 10/10 289.1 1/10 301.1 0/10 - 0/10 - 6/10 278.7 10/10 242.6 4/10 409.3

C
M

A
-E

S Breach 10/10 21.9 6/10 30.3 10/10 193.9 4/10 208.8 3/10 75.5 10/10 111.7 3/10 256.3 10/10 119.8
Basic 10/10 15.8 10/10 108.5 10/10 697.1 7/10 786.8 9/10 384.4 10/10 182.0 7/10 336.9 10/10 338.0
P.W. 10/10 10.8 10/10 65.7 10/10 728.6 7/10 767.8 10/10 648.1 10/10 177.1 8/10 272.9 10/10 473.9

G
N

M Breach 10/10 5.4 10/10 151.4 0/10 - 0/10 - 0/10 - 10/10 171.4 0/10 - 0/10 -
Basic 10/10 12.4 10/10 162.3 10/10 185.6 7/10 261.9 7/10 163.7 10/10 227.1 2/10 378.5 10/10 162.2
P.W. 10/10 60.8 9/10 110.7 8/10 211.2 8/10 313.0 10/10 178.7 10/10 252.0 6/10 153.2 6/10 197.4

SA

Breach 10/10 160.1 0/10 - 3/10 383.7 0/10 - 3/10 80.4 0/10 - 6/10 307.0 3/10 92.8
Basic 10/10 264.8 9/10 236.1 8/10 385.6 8/10 505.3 7/10 341.2 5/10 391.3 8/10 273.8 10/10 273.2
P.W. 10/10 208.7 10/10 377.6 8/10 666.0 7/10 795.4 10/10 624.2 8/10 665.7 6/10 293.7 10/10 390.9

the 4 steps to conduct MCTS:
• Selection: initially, we just select R; otherwise, we

select a child according to UCB1.
• Expansion: create a new node N for one sub-space

that has not been expanded.
• Playout: collect the set of sub-spaces on the path

from R to N , and incorporate the whole spaces in
the remaining levels until reaching a leaf; run hill-
climbing optimization on the sequence of spaces
with a short timeout, and obtain robustness RobN .

• Backpropagation: compute reward of N , and update
the reward and number of visits from N to R.

The reward RN of a node N in T is defined as(
1− RobN

maxw∈T Robw

)
, where w is any node of T . Further-

more, UCB1 algorithm returns one child of a node N

according to arg max
w∈N.Children

(
Rw + c

√
2 lnV (N)

V (w)

)
, where

V (w) is the number of visits to a child node w of N ,
and c is a scalar for balancing exploitation to the “best”
child and exploration to other children.

The algorithm illustrated until now is a basic two-
layered framework, as shown in Fig. 2. As on one level
the partitions to explore could be too many, in a variation
of the approach we use progressive widening [7] to skip
some of them for not spending too much on exploration.

EXPERIMENTAL EVALUATION AND DISCUSSION

We implemented our algorithms, namely Basic for the
basic two-layered framework and P.W. for the improve-
ment with progressive widening, and evaluated them on
3 Simulink benchmark models: Automatic Transmission
(AT) [8], Abstract Fuel Control (AFC) [9] and Free
Floating Robot (FFR) [10]. We compare the perfor-
mance with random sampling and the state-of-the-art
tool Breach [3] with 3 back-end hill-climbing algorithms,
CMA-ES, GNM and SA. The specifications under test
are S1-S5 for AT, Sbasic and Sstable for AFC, and Strap
for FFR. A detailed introduction to all the benchmarks,
specifications and experimental settings is in [6]. Table I
presents the results in terms of success rate (out of 10

trials), and average time for successful runs. Based on the
criterion that success rate is more important, local best
performers are in boldface and global best performers
w.r.t. each specification are colored green.

In Table I, if we label each specification as “hard”
or “easy” according to the performance of random
sampling, we observe that for “hard” specifications like
S4 and S5, our approach performs better in terms of
falsification rate, i.e., it enhances the ability to find coun-
terexamples compared to the existing tools; for “easy”
properties like S1 and Sbasic, it performs comparably
with Breach. For many trials, our algorithm is more time-
consuming: this is expected, as we spend more time on
exploration. In this way, we improve the falsification rate
and so the time overhead is still acceptable.

REFERENCES

[1] O. Maler and D. Nickovic. Monitoring temporal properties of
continuous signals. In Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems, pages 152–166, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[2] A. Donzé and O. Maler. Robust satisfaction of temporal logic
over real-valued signals. In Proceedings of FORMATS’10, pages
92–106, Berlin, Heidelberg, 2010. Springer-Verlag.

[3] A. Donzé. Breach, A toolbox for verification and parameter
synthesis of hybrid systems. In CAV 2010.

[4] Y. Annapureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan.
S-taliro: A tool for temporal logic falsification for hybrid systems.
In Proceedings of TACAS’11/ETAPS’11, pages 254–257, Berlin,
Heidelberg, 2011. Springer-Verlag.

[5] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning.
In Proceedings of ECML’06, pages 282–293, Berlin, Heidelberg,
2006. Springer-Verlag.

[6] Z. Zhang, G. Ernst, S. Sedwards, P. Arcaini, and I. Hasuo. Two-
layered falsification of hybrid systems guided by monte carlo
tree search. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11):2894–2905, Nov 2018.

[7] R. Coulom. Computing ”Elo ratings” of move patterns in the game
of Go. ICGA Journal, 30(4):198–208, 2007.

[8] B. Hoxha, H. Abbas, and G. Fainekos. Benchmarks for temporal
logic requirements for automotive systems. In ARCH14-15, vol. 34
of EPiC Series in Computing, pages 25–30. EasyChair, 2015.

[9] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts.
Powertrain control verification benchmark. In Proc. of HSCC ’14,
pages 253–262, NY, USA, 2014. ACM.

[10] J. Deshmukh, M. Horvat, X. Jin, R. Majumdar, and V. S. Prabhu.
Testing cyber-physical systems through bayesian optimization.
ACM Trans. Embed. Comput. Syst., 16(5s):170:1–170:18, 2017.

2

	References

