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How do we design safe and reliable
cyber-physical systems ?
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Model-based design (MBD)

Analyze and understand the requirements specification

Develop computational model(s) of the system

— Check the model against the real system
= ""are you are building the right thing?" (validation)

— Check the model against specifications
= "are you building it right?" (verification)

Build a prototype

— test the prototype in the actual working environment

Production
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Fatal Crashes, 1975-2015
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Motor Vehicle Fatality and Injury Rates per 100 Million Vehicle Miles Traveled, 1966-2015

Fatality Rate per 100 Million Vehicle Miles Traveled

Injury Rate per 100 Million Vehicle Miles Traveled
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Vehicles Involved in Fatal Crashes by Speed Limit and Land Use
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Land Use
Rural Urban Unknown Total
Speed Limit Number Percent Number Percent Number Percent Number Percent
30 mph or less 707 15.8 3,033 67.9 725 16.2 4,465 100.0
35 or 40 mph 1,707 20.6 5,523 66.5 1,071 12.9 8,301 100.0
45 or 50 mph 3,506 35.9 5,374 55.0 890 9.1 9,770 100.0
55 mph 9,743 74.8 2,928 22.5 351 2.7 13,022 100.0
60 mph or higher [6,600 60.0] 4152 37.7 254 2.3 100.0
No Statutory Limit 113 33.6 177 52.7 46 13.7 336 100.0
Unknown 629 31.1 1,187 58.7 207 10.2 2,023 100.0
Total 23,005 47.0 22,374 45.7 3,544 7.2 48,923 100.0

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812384




Percent of Vehicle Occupants Killed, by Speed Limit and Land Use

Percent of Vehicle Occupants Killed
50

Land Use:
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Cooperative Intersection Collision Avoidance System: Stop-Sign
Assist (CICAS-SSA)

not shown
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Figure 1: Plan view of a typical instrumented rural four lane expressway intersection. Sensors are radar (yellow triangles

indicate field of view and) scanning lidar (orange semicircles); all data is sent from sensor processors to the main central
processor.

http://www.dot.state.mn.us/quidestar/2006 2010/cicas/CICAS-SSA%20Report%202.pdf 8
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CICAS-SSA Schematic
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Formal Verification
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Formal Verification

Model
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Analysis Procedure
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There is no system model!

But there are models...

1



Heterogeneity in modeling formalisms and analysis techniques
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CICAS-SSA
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Discrete & timed
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Hybrid-dynamic Network

* Different formalisms suited for different aspects of system design
* Each model represents some design aspect well

* Models make interdependent assumptions

* Tools work only with their formalisms

How do we ensure correctness of the system?
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Cyber-Physical System Architecture
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An Architectural Approach to the Design and Analysis of
Cyber-Physical Systems '
Akshay Rajhans', Shang-Wen Cheng”, Bradley Schmerl?, David Garlan®, Bruce

H. Krogh!, Clarence Agbi' and Ajinkya Bhave' <A There IS no SyStem mOdel, but Analysis Tool Y
”%  there is a system architecture
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Architectural views

Software View Hardware View

Models as architectural views

Augmenting Software Architectures with Physical Components

Ajinkya Bhave', David Garlan?, Bruce H. Krogh', Akshay Rajhans’, Bradley Schmerl?

1Dept of Electrical and Computer Engineering

ERTS2 ‘10 2School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213-3890 USA
email: {ajinkya@ | garlan@cs.| krogh@ece.| arajhans@ece.| schmerl@cs.}jcmu.edu
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Control View Physical View Process Algebra View Hardware View
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Structural consistency using graph morphisms

View Consistency in Architectures for

s | Cyber-Physical Systems

Ajinkya Bhave, Bruce H. Krogh

David Garlan, Bradley Schmerl

7<= “Model structure vs system structure”
Analysis: Consistency, completeness

1414



Semantic domains of models and specifications
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[[/\/I]]B : “semantic interpretation”
of M in a behavior domain B
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Behavior domains B precisely defined in behavior formalisms B (e.g., discrete traces, continuous trajectories, hybrid traces)

U
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The semantic domain of a dynamic system

= Points, [ ]
— OnN

— OnRXxN

= Intervals, [ )
— OnR

= Hybrid point/interval
- OnR

— OnRXxN

REREEAAE:
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MATLAB, Stateflow

(K ¥

Discrete time Simulink

SimEvents

v

Simulink

Simulink, Simscape

Simulink, Simscape

&\ MathWorks:
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Abstraction and Implication

Model M, abstracts M, in B, written My CZ M

it [Mo]® < [Mi]®

= Specification S, implies S, in B, written 5, =B S,

if [S1]% C [So]®

)

B . —

[M1]°

[Mo]® -

4@\ MathWorks

L

B —
[So]®
[51]°

v
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Mappings between semantic domains via behavior relations

Approach: Create “behavior relations” between domains

- - -~ L T >_’ l_r
Example =

Given R; € B, X B,
set-based inverse map
Ryt (‘a’)={c,d,...}

B, : 1-d continuous trajectories in x

18



Heterogeneous Abstraction and Implication

« Heterogeneous extensions of behavior-set inclusions

Heterogeneous Abstraction

My CR My, if BO/N BO/N
(a) [Mo]® C RyH([IM]PY). [Mo] B T R ([S1]5Y)
R (IMIP] [So]® [ 2

51 =R So, if

REY(ISB) € [Sol®.

Heterogeneous Specification Implication J

————————————— > Heterogeneous
A |
¢+ M | P | Si < Abstract level

Heterogeneous Verification i ) T
J o EANERO

If Mo C°Rt My, My =BLS; and S; =R S,
then My IZBO So.

Mo So < Detailed level

(in words) (pictorially)

&\ MathWorks:
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Multi-model Verification Problem

S = = -
:" st s - e
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Discrete & timed

M; EBi s,
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How do we use M; =81 Sy, ...,
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Ms = B2 5,

M, =B S, to infer My =82 So?

4\ MathWorks
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Heterogeneous Verification of Cyber-Physical Systems

Multi-model conjunctive and disjunctive heterogeneous verification

Conjunctive specification implication

Given behavior relations R; C By x B;, a set of
specifications S1,...S, conjunctively imply Sy if

N RTH(ISIP) € [So]®.

Typical use case
* Each model captures a different aspect
* Specs pertain to only the relevant one

[Mo]®

HSCC ‘12

Akshay Rajhans Bruce H. Krogh
jhans@ece.cm

using Behavior Relations ' ni Ri_l ( [[S’.IIBI

Model coverage (disjunctive abstraction)

Given behavior relations R; C By x B;, a set of
models My, ... M, cover My if
[Mo]® < U; R ([Mi]®).

Typical use case

. Each model captures a different subset of
behaviors, e.g., a specific nondeterministic
choice

21



Hierarchical Verification
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Conjunctive and disjunctive verification constructs can be nested arbitrarily

@ Verification successful
(O Verification inconclusive
@ erification failed

/> Individual verification task M; =5 S;
fOI‘ ﬂfz' € Mi,Si € Si_-,Bz' S Bz’

o Conjunctive specification
implication

v Individual model coverage

0 Individual specification
implication

o Disjunctive model coverage

22



Heterogeneous Verification of CICAS

Time-to-exit-
Time-to- intersection

intersection

POV  sv

Order
Discrete
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SV and POV not
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at the same time

Single POV
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g
“Universal” system mode’

(cannot be created in practice)
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(empirical information)
Driver response time

SV and another car not in
the intersection at the same
time

Single POV
(POV initial SV and POV not
condition unsafe in the intersection

Only stay stopped)at the same time
(trivially safe)

N models with
one lane each

A SV and POV not
in the intersection
at the same time

=2
o
o
D
N
w

communication model
Communication delay

ensing model
Sensing-erfor

N\ conjunctive abstraction

\/ disjunctive coverage

\/* discrete coverage with
inter-model switching

Model info

Spec

4\ MathWorks
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Verification Problem

stopped

conflict_1
Yt = vi; U € [2,5]

MN-dimensional y = 180

vector ﬁ Yr=0;v,=0
y < 180
<-300
driving waiting conflict_s
#2030 ) || ( g=0i=0 B (. =v.; v € 0.25,5 )V 219
r <0 2 <300 x <-300 =0 1=0
- - ya S 45
_ x <=300
2(0) € [-420,0] y(0) = 0;v(0) =0 P Conflictr
Yr =05 Uy € [2,5] \yr 2 170
vr = 0; =0
Major Road SV yr < 170

erification objective: and another car are never in
intersection at the same time”

O-((z==0A0 <y, <4.5)V(zr ==0A0 <y, < 170))V(z == 0A0 < y; <180))

4\ MathWorks
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Disjunctive Heterogeneous Verification

Sa1: 0= (z==0A0< y < 180)
conflict_1
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Major Road SV 25




Heterogeneous verification of CICAS-SS
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Conjunctive Heterogeneous Verification

Node 51

Node 5 Node 53

conflict_s

driving
& € [20,30]
<0

z(0) € [—420,—300] +(0) = 0;v,(0) =0

Ss1:0(x==-300=09 x < Sso : O (08 ys >\4.5)

Ss3 : O (61 A =) = =(0ds))
¢ 1s the predicate “POV is close”
@9 1s the predicate “SV is driving”

Node 41

driving
x € [20,30]
z <0

conflict_s

ys < 4.5

2(0) € [-420,=300]  4,(0) = 0;v5(0) =0
POV

S41:D—l(12==0/\0<ys<4.5)
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P; € My, with @1 € M1, with
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Schematic

Leveraging Compositionality for Heterogeneous Abstraction

Objective: Conclude
heterogeneous abstraction of the
composition by establishing that
of the components

Rationale: Component’s local
semantics defined in a behavior
domain of smaller dimension

Need

e Behavior abstraction functions
A : behavior relations that are
also functions

* Mappings between local/global
behavior domains of the same
type

* Mappings between local/global
abstraction functions

<&@\ MathWorks
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Compositionality Conditions

P; € My, with Q1 € M1, with
P
Pl cePen | | jQiEf cBR e s,

h M; € M, with
[M1]B: C By € By
. l<— - shows — — >
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| |
o1 cBf el | jou c B e 5
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\/I____)vé__i
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Centralized Development

Start with 4, localize to get A?, AL

If localizations of A are “A? and
AL, then compositional
heterogeneous abstraction via A

holds

e wu
R

Models as composition of components”
Analysis: Compositional Abstraction

Decentralized Development

Start with A7, AL globalize to get A

If globalizations of A?, AL are
consistent (call it A ), then
compositional heterogeneous
abstraction via A holds

Compositional Heterogeneous Abstraction

HSCC 13

Akshay Rajhans

Bruce H. Krogh
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Semantic Assumptions as Parameter Constraints

Problem
/ g 1 i \ e Semantic interdependencies

across formalisms
* Consistency

Senor (look-up table) Physics-based Verifi;ation Network ”‘"Suof‘t;/vare
Ho f;st can the f N /
\
Challenge o
* Formal representation that is
ondingsr What's the computation universal to all modeling
readings? time?
\ / formalisms
Approach

* interdependencies as an
auxiliary constraint on
parameters

* Find effective constraint on given

model/spec. parameters
Dependencies that cut across modeling formalisms \/ (existential quantification)

can be captured as parameter constraints
e Use SMT solvers or theorem
provers to prove consistency

Using Parameters in Architectural Views to Support

cDC 11 Heterogeneous Design and Verification ; j Ensures Semantic (parameter) ConSiStenCy
Akshay Rajhans, Ajinkya Bhavef, Sarah Loost, Bruce H. Kroghf. André Platzert, David Garlant USi ng eXte rnal SMT SOIVe rS Or prove rS

<&@\ MathWorks



Parametric Verification of CICAS

Parameterized models and specifications

B,: 3-d hybrid traces

Spp U-lz==0n0=y<= h)

Heterogeneous Verification of Cyber-Physical Systems

, using Behavior Relations
HSCC 12
Akshay Rajhans Bruce H. Krogh
arajhans@ece.cmu.edu krogh@ece.cmu.edu

1. Explicitly identify model parameters
e.g. speed limits, intersection
geometry, minimum acceleration, and
spec. parameters, e.g., POV min. time-
to-intersection, SV max. time-to-clear-
intersection

2. Model interdependencies as an
auxiliary constraint

e.g., those dictated by speed limits,
newton’s laws and intersection
geometry on time-to-intersection, ...

3. Project global constraints and
interdependencies (aux. constraint)
onto local sets of parameters

< Proved semantic consistency in

theorem prover KeYmaera

&\ MathWorks:
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Semantic and Structural Hierarchies

..................

Vg “arivi n-g‘"\l
[ e )

PP /
M

------------------------------ Structural [mapping

" 'Veri

Verification M,

Model-to-view correspondence

0
» -
I‘
o e == / I
= > F P
= - e et
T, S
My Base architecture

Semantic side Structural side

E— Supporting Heterogeneity 1n
(CPs specialissue) | Cyber-Physical Systems Architectures

Akshay Rajhans’. Ajinkya Bhave!, Ivan Ruchkin?, Bruce H. Krogh™*, David Garlanf, André Platzer! and Bradley Schmerl?
32
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Summary

Cyber-Physical Systems present a major paradigm shift with systems that are
— Adaptive, Autonomous, Connected, and Collaborative

Model-based design critical for safe and efficient design process
— Open-ness and heterogeneity pose research challenges

Contributions for supporting heterogeneity in MBD of CPS
— Architectural modeling: high-level structural representation [MPM “09]
— Model structures as architectural views for comparing structure [ERTS '10]

— Semantic mappings using behavior relations enable (compositional) heterogeneous
verification [HSCC 12, HSCC ’13]

— Constraint consistency for consistent simplifying assumptions [CDC 11, HSCC ‘12]

Many challenges still remain

33 33
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