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Fatal Crashes, 1975-2015
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Motor Vehicle Fatality and Injury Rates per 100 Million Vehicle Miles Traveled, 1966-2015

Fatality Rate per 100 Million Vehicle Miles Traveled
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Vehicles Involved in Fatal Crashes by Speed Limit and Land Use
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Land Use
Rural Urban Unknown Total
Speed Limit Number Percent Number Percent Number Percent Number Percent
30 mph or less 707 15.8 3,033 67.9 725 16.2 4,465 100.0
35 or 40 mph 1,707 20.6 5,523 66.5 1,071 12.9 8,301 100.0
45 or 50 mph 3,506 35.9 5,374 55.0 890 9.1 9,770 100.0
55 mph 9,743 74.8 2,928 22.5 351 2.7 13,022 100.0
60 mph or higher [6,600 60.0] 4152 37.7 254 2.3 100.0
No Statutory Limit 113 33.6 177 52.7 46 13.7 336 100.0
Unknown 629 31.1 1,187 58.7 207 10.2 2,023 100.0
Total 23,005 47.0 22,374 45.7 3,544 7.2 48,923 100.0

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812384




Percent of Vehicle Occupants Killed, by Speed Limit and Land Use
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Cooperative Intersection Collision Avoidance System: Stop-Sign
Assist (CICAS-SSA)
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Figure 1: Plan view of a typical instrumented rural four lane expressway intersection. Sensors are radar (yellow triangles

indicate field of view and) scanning lidar (orange semicircles); all data is sent from sensor processors to the main central
processor.

http://www.dot.state.mn.us/quidestar/2006 2010/cicas/CICAS-SSA%20Report%202.pdf 6
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CICAS-SSA Schematic
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Formal Verification
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There is no system model!

But there are models...



Heterogeneity in modeling formalisms and analysis techniques
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* Different formalisms suited for different aspects of system design
* Each model represents some design aspect well

* Models make interdependent assumptions

* Tools work only with their formalisms

How do we ensure correctness of the system?
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Cyber-Physical System Architecture
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An Architectural Approach to the Design and Analysis of
Cyber-Physical Systems '
Akshay Rajhans', Shang-Wen Cheng”, Bradley Schmerl?, David Garlan®, Bruce

H. Krogh!, Clarence Agbi' and Ajinkya Bhave' <A There IS no SyStem mOdel, but Analysis Tool Y
”%  there is a system architecture
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Architectural views

Software View Hardware View

Models as architectural views

Augmenting Software Architectures with Physical Components

Ajinkya Bhave', David Garlan?, Bruce H. Krogh', Akshay Rajhans’, Bradley Schmerl?
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Structural consistency using graph morphisms

View Consistency in Architectures for

s | Cyber-Physical Systems

Ajinkya Bhave, Bruce H. Krogh

David Garlan, Bradley Schmerl

7<= “Model structure vs system structure”
Analysis: Consistency, completeness
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Semantic domains of models and specifications
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The semantic domain of a dynamic system
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Abstraction and Implication

Model M, abstracts M, in B, written My CZ M
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Mappings between semantic domains via behavior relations

Approach: Create “behavior relations” between domains
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Given R; € B, X B,
set-based inverse map
Ryt (‘a’)={c,d,...}

B, : 1-d continuous trajectories in x
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Heterogeneous Abstraction and Implication

« Heterogeneous extensions of behavior-set inclusions

Heterogeneous Abstraction
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Multi-model Verification Problem
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Multi-model conjunctive and disjunctive heterogeneous verification

Conjunctive specification implication

Given behavior relations R; C By x B;, a set of
specifications 51, ...S, conjunctively imply Sy if
N RTHIST®) € [S0]®.

[Mo]®

Typical use case
 Each model captures a different aspect

* Specs pertain to only the relevant one

Model coverage (disjunctive abstraction)

Given behavior relations R; C By x B;, a set of
models My, ... M, cover My if
[Mo]® < U; R ([Mi]®).
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Typical use case
. Each model captures a different subset of

behaviors, e.g., a specific nondeterministic

choice L



Hierarchical Verification
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Conjunctive and disjunctive verification constructs can be nested arbitrarily

@ Verification successful
(O Verification inconclusive
@ erification failed

/> Individual verification task M; =5 S;
fOI‘ ﬂfz' € Mi,Si € Si_-,Bz' S Bz’

o Conjunctive specification
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v Individual model coverage

0 Individual specification
implication
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Het. Verification of CICAS
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Heterogeneous verification of CICAS-SS
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Semantic and Structural Hierarchies
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