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Talk outline

➢ Cyber-physical systems: a feature classification

▪ “Runtime” verification at design time: simulation as a proxy for run time

▪ Runtime analysis at operation time: From CPS to IoT and Digital Twins

▪ Challenges and future outlook
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Cyber-physical systems: umbrella term, not a precise definition

Computation

ControlCommunication

“The term cyber-physical systems (CPS) 

refers to a new generation of systems with 

integrated computational and physical 

capabilities that can interact with humans 

through many new modalities. 

The ability to interact with, and expand the 

capabilities of, the physical world through 

computation, communication, and control

is a key enabler for future technology 

developments.”

- Helen Gill and Kisan Baheti, NSF
IEEE Impact of Control Technology, T. Samad and A.M. 

Annaswamy (eds.), 2011. Available at www.ieeecss.org. 
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Control – closing the loop over the physical environment

Computation

ControlCommunication

Sense Act

Environment
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Computation – fueled by Moore’s law

Computation

ControlCommunication

Source: Wikipedia

Computation Axis
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Computation – fueled by Moore’s law

Cost of 

Printing 

Annual

Production

> >

Computation

ControlCommunication

Source: Intel, IEEE

Computation Axis
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Communication – Nielsen’s law, Metcalfe’s law

Computation

ControlCommunication

Source: nngroup.com Source: Wikipedia
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Computation Axis
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CPS feature classification
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Outline

▪ CPS feature classification

➢ “Runtime” verification at design time: simulation as a proxy for run time

▪ From CPS to IoT and Digital Twins: runtime analysis

▪ Challenges and future outlook
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Model-Based Design: Models as a proxy for the real system

Requirements

Architecture

Components

Implementation

Unit 

Testing

Integration 

Testing

Acceptance 

Testing

Model-Based Design:

Use of computational models throughout
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CPS
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Simulations for increasingly faithful proxies of runtime behavior

▪ Model-in-the-loop simulation simulate / test the model

▪ Software-in-the-loop simulation the generated code

▪ Processor-in-the-loop simulation code on the processor

▪ Hardware-in-the-loop simulation plant on real-time h/w

▪ Gaming-engine-in-the-loop visualization, physics

Ride & handling Chassis controls ADAS / AD



14

Physics

Sensors Actuators

Network

Microprocessor Microprocessor

time

time

time

time

index

index

C code

Multi-rate 

C code

value
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Not today – how to address heterogeneity formally?
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Models and Specifications

Model M A behavior b that M exhibits

Specification S

“overshoot is never more than 30% 
and settling time is less than 𝜏”

+30%

A behavior b that S allows

±ϵ

τ

100%

x

time

B

b

𝑀 𝐵

B

b

𝑆 𝐵
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Various verification problems
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Robust testing a.k.a. simulation-based reachability analysis
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Testing
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Robust testing a.k.a. simulation-based reachability analysis

[R07] A. Rajhans, “Development of Robust Testing 

Toolbox for Hybrid Systems,” MS Thesis, University 

of Pennsylvania, 2007.

[DRJ13] Y. Deng, A. Rajhans, and A. A. Julius, 

“STRONG: A Trajectory-Based Verification Toolbox 

for Hybrid Systems,” 10th International Conference 

on Quantitative Evaluation of SysTems (QEST), 

2013.

B

b

Robust

Neighborhoods

Related work by Fainekos, Pappas, Balkan, Tabuada, Zutshi, Sankaranarayanan, Kanade, Alur, …

[DKR09] A. Donzé, B. H. Krogh, and A. Rajhans, 

“Parameter Synthesis for Hybrid Systems with an 

Application to Simulink Models,” 12th IEEE/ACM 

International Conference on Hybrid Systems: 

Computation and Control, 2009.

Bisimulation functions

Sensitivity analysis

Lyapunov analysis, contraction metrics, barrier certificates, concolic testing …
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Toyota adoption a success story
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Formalizing specifications to enable falsification

B
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STL introduced
[MN04]

Quantitative Semantics

for MTL
[FP06]

Falsification Testing

[NFS+10]

Quantitative Semantics

for STL

[DM10]

Toyota promotes

falsification testing and

specification mining

2012 –

[JDDS13][AH+14]

STL Parameter 

Synthesis

[ADMN11]

Barbaric

reachability
[KKMS03]

Learning STL 

specifications

[BVPYB16] 

Efficient Monitoring of 

Quantitative STL

[DFM13]

Trace diagnostics for

STL

[FMN15]

System diagnostics for

STL

[BFMN18]

Credit: Dejan Ničković (via Bruce Krogh), Oded Maler: A memory box full of diamonds, MT-CPS 2019.

Signal Temporal Logic as a success story
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An actual bug uncovered via falsification at Toyota
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Considerations for engineering adoption of temporal logics

▪ Engineers are not logicians – logic vocabulary could be a challenge

▪ Simple engineering concepts may require complex logical formulas

▪ Multiple modeling formalisms that interact

▪ Multiple combinations of time/signal domains, data types, solver settings
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HSCC 2015 Keynote, Jyotirmoy Deshmukh, (then) Toyota
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Logical and temporal assessments in Simulink Test

▪ Formalize and execute requirements directly as Test Assessments

System Under Test

Requirements

1. The difference between the room temperature and the set 

temperature should never exceed 6 degrees.

2. If the temperature difference exceeds 4 degrees for more than 

2 seconds, then the pump shall activate for at least 2 seconds

Formalize and execute
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>> sltestmgr

Authoring

□[𝑡0,𝑡𝑓] ( (𝑥 ⋈ 𝑎) ⊖ 𝑥 ⋈ 𝑏 )

where 

⋈ ∈ ≤,<,≥,> ,
⊖ ∈ {∨,∧}
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>> sltestmgr

□[𝑡0,𝑡𝑓] 𝜙

Authoring



29

>> sltestmgr

□[𝑡0,𝑡𝑓] (𝜙1 ⇒ ♢[𝑡𝑚,𝑡𝑀] 𝜙2)

Authoring
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>> sltestmgr

Authoring

□[𝑡0,𝑡𝑓] (𝜙1 ⇒ ♢[𝑡𝑚,𝑡𝑀] 𝜙2)

𝜙1

𝜙2

♢[𝑡𝑚,𝑡𝑀]
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Symbol resolution and mapping

sine_wave

Sine Wave
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Assessment and explanation in case of failure

Visual Comparison: expected vs actual Textual explanation

Assessment tree
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Expression tree

Did not get 

tested

[𝑡, 𝑇] ⊕ [0,1.5]

Rising edge

[𝑡, 𝑇] ⊖ [0,1]

𝜙1 ⇒ 𝜙2 ≡ ¬𝜙1 ∨ 𝜙2 ?

Tested and failed

□[𝑡0,𝑡𝑓] (𝜙1 ⇒ ♢[0,𝑡𝑀] 𝜙2)
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Synchronization and interpolation
Research challenge: heterogeneity

• discrete and continuous time

• discrete and continuous value

• Needing to up/down-sample 

may impact frequency domain 

characteristics

• Dataflow domain: cannot insert 

or remove data points

STL ♡ LTL ?

Currently not supported
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Outline

▪ Cyber-physical systems: a feature classification

▪ “Runtime” verification at design time: simulation-based approaches

➢ Runtime analysis at operation time: From CPS to IoT and Digital Twins

▪ Challenges and future outlook
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Operation

Models are useful in both design and operation

Challenges in the Operation and Design of Intelligent Cyber-Physical Systems, S. Castro, P.J. Mosterman, A.H. Rajhans, 

and R.G. Valenti, book chapter, Complexity Challenges in Cyber Physical Systems: Using Modeling and Simulation 

(M&S) to Support Intelligence, Adaptation and Autonomy, S. Mittal and A. Tolk, eds., Wiley, 2019.
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Internet of Things topology

InternetThing
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Internet of Things topology

InternetThing

Sense Act

Environment
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Industrial Internet of Things topology – Enterprise level operations

Smart assets Edge systems

Local
Communications

Long-Range
Communications Integration

Off prem cloudOn-prem data center
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A complex collection of tools, platforms, and protocols

Azure Stream 

Analytics

TCP/IP

Rest APIs

Analyst/Engineer

• Chipmakers

• Transport protocols

• Operating systems running on edge or on-premises

• Cloud providers

• Streaming protocols for getting data in and out of the cloud platforms

• Services for managing data, timing, and other Industrial IoT requirements

• Dashboard tools for visualizing information in any area of the landscape

Smart assets Edge systems

Local
Communications

Long-Range
Communications Integration

Off prem cloudOn-prem data center
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Speed Scope

Applications at the Asset, the Edge, or Operational Technology Platform
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Time-sensitive decisions Big Data processing on historical data Real-time decisions
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Hard real-time control
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Edge Processing 
Model-Based Design, 

code generation

Real-time decisions

Development for Fast and Highly-Deterministic Systems

Speed

Seconds Minutes Hours Days MonthsMilliseconds

Hard real-time control

Model-Based Design 
with automatic code 

generation

Time
Time

Model-Based Design

Multi-domain system 

modeling
Parameter 

estimation

VPOC

PPOC

QPOC

PSIM

QSIM

Automatic code 

generation

CODE GENERATION

MCU DSP FPGA ASIC

VHDL, VerilogC, C++ Structured Text

PLC

• Compute limited but have a choice

• Data usually as a memory read

• Product design focus

Smart assets Edge systems

Local
Communications
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Stream Processing

Time-sensitive decisions

Hadoop/Spark, and other 

enterprise IT integration

Big Data processing on historical data 

Development to OT/IT On-Prem and in Cloud

Scope

Seconds Minutes Hours Days MonthsMilliseconds
Machine Learning 

and Deep Learning

OptimizationVariety and 

Volumes of Data

Enterprise system integration, 

(on-prem/cloud)

Long-Range
Communications Integration

Off prem cloudOn-prem data center

• Compute abundant but less control

• Data access as streaming messages

• Service focus
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Digital Twin 

Create computational model of asset in operation

• Data-driven (MATLAB) or first-principles (Simulink) models

• Reuse models from development process (e.g. MBD)

• Kept up-to-date during asset operation (e.g. aging, wear, environment)

Use the computational model (digital twin) during operation

• Optimize fleet or system behavior

• Calculate control setpoints or parameters

• Predict future behavior or events

Optimize

Control

Predict

Analyze

Monitor

Diagnose

V

A

L

U

E
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Reference example

Triplex Pump

Machine Learning 

fault classifier model

Visualization 

dashboard

Model tuned during 

operation

Parallel sims to 

explore scenarios

❶ Fault Classification Using MATLAB

❷ “What-If” Analysis Using Simulink/Simscape Digital Twin 

• MATLAB

• Statistics & Machine 

Learning Toolbox

• MATLAB 

Production Server

• Simulink/Simscape

• Simulink Design 

Optimization

• MATLAB 

Parallel Server
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Research Connections
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In summary

▪ Cyber-physical systems continue to gain intelligence and autonomy

▪ CPS are open, interconnected, and change after deployment

▪ Formal specification and simulation-based approaches fill an important 

scalability gap w.r.t formal verification

▪ Model-Based Design approaches are being supplanted by model-based 

operation

▪ Scalability to enterprise-level system will be the value driver
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