Robustness of Temporal Logic Specifications for Signals Georgios Fainekos dissertation series - Part I

Akshay Rajhans

ECE Department, CMU

SVC Seminar: Aug 21, 2008

< 4 ₽ > < 3

Outline

Background and definitions

- 2 Boolean satisfaction of a specification by a signal Boolean abstraction
- 8 Robust satisfaction of a specification by a signal "Robustness degree"
- 4 Robust TL semantics "Robustness estimate"
- 5 Discrete time signals, timed state sequences and their robustness
- 6 Continuous time reasoning using discrete time analysis
- Monitoring algorithm and software tool

- 3

イロト イポト イヨト イヨト

Outline

Background and definitions

- 2 Boolean satisfaction of a specification by a signal Boolean abstraction
- 3 Robust satisfaction of a specification by a signal "Robustness degree"
- 4 Robust TL semantics "Robustness estimate"
- 5 Discrete time signals, timed state sequences and their robustness
- 6 Continuous time reasoning using discrete time analysis
 - Monitoring algorithm and software tool

Background

On the use of temporal logic (TL)

- TL useful in software and hardware verification
- But verification undecidable/expensive in continuous and hybrid systems
- Testing of the systems or numerical simulation of the system models are preferred choices in these cases; steady state properties can be fairly easily tested or numerically simulated

Important idea

- Use TL as a specification language for testing
 - Oded Maler and Dejan Nickovic. *Monitoring temporal properties of continuous signals*. FORMATS, 2004
- Advantage: Transient properties can be specified (and hence tested) if we use temporal logic.

Typical structure for testing using TL

Signal

• We either give an analytical formula or some samples of the signal

Specification

- We use metric interval temporal logic to specify some formula
- Observation map: is a Boolean abstraction map from signal space to true/false
- Intuition: We specify that the signal must be within this range during this time span

Monitoring algorithm

• We have some sort of algorithm to check whether or not the signal was indeed within that range during that time span

Result

• If yes, we get a 'true' result; 'false' otherwise

Continuous time signal

Formal definition

- A signal s is a map $s : T \to X$, where
 - T is a time domain, some subset of $\mathbb{R}_{>0}$
 - X is a metric space, to be defined in the next slide

Example:

Metric space, metric, ε -ball

Metric space

• A metric space (X, d) is an ordered pair of a set X and a metric d.

Metric

• A metric *d* is a non-negative function $d: X \times X \to \mathbb{R}_{\geq 0}$, such that $\forall x_1, x_2, x_3 \in X$, we have:

•
$$d(x_1, x_2) = 0 \Leftrightarrow x_1 = x_2$$

•
$$d(x_1, x_2) = d(x_2, x_1)$$

• $d(x_1, x_3) \leq d(x_1, x_2) + d(x_2, x_3)$

 ε -ball

• An ε -ball $B_d(x, \varepsilon)$ is defined as

•
$$B_d(x,\varepsilon) = \{y \in X | d(x,y) < \varepsilon\}$$

Signed distance

Formal definition

۲

- Let $x \in X$ be a point, $C \subseteq X$ be a set and d be a metric.
- Then, the signed distance from x to C is:

$$Dist_d(x, C) = \begin{cases} -dist_d(x, C), & \text{if } x \notin C \\ depth_d(x, C), & \text{if } x \in C \end{cases}$$

(1)

where,

•
$$dist_d(x, C) = inf \{d(x, y) | y \in Cl(C)\}$$

•
$$depth_d(x, C) = dist_d(x, X \setminus C)$$

Pictorially:

Metric (Interval) Temporal Logic - Syntax

Inductive grammar

 $\varphi = \mathsf{T}|\perp |\mathsf{p}|\neg \varphi|\varphi_1 \vee \varphi_2|\varphi_1 \wedge \varphi_2|\varphi_1 \mathcal{U}_{\mathcal{I}}\varphi_2|\varphi_1 \mathcal{R}_{\mathcal{I}}\varphi_2$

Note that:

- In MTL, *I* can be any bounded or unbounded but non-empty interval of ℝ_{≥0} e.g. [a, b], [a, b), (a, b], (a, b), where 0 ≤ a ≤ b
- In addition, MITL requires $\mathcal I$ to be non-singleton, i.e. $a \neq b$
- If a = 0 and $b = \infty$, the M(I)TL formula is equivalent to LTL formula
- 'Eventually' and 'Always' operators can be derived as follows:

• $\Diamond_{\mathcal{I}} \varphi = \mathsf{T} \mathcal{U}_{\mathcal{I}} \varphi$ and $\Box_{\mathcal{I}} \varphi = \perp \mathcal{R}_{\mathcal{I}} \varphi$

Outline

Background and definitions

2 Boolean satisfaction of a specification by a signal - Boolean abstraction

- 3 Robust satisfaction of a specification by a signal "Robustness degree"
- 4 Robust TL semantics "Robustness estimate"
- 5 Discrete time signals, timed state sequences and their robustness
- 6 Continuous time reasoning using discrete time analysis
 - Monitoring algorithm and software tool

Boolean satisfaction of a specification by a signal

Boolean abstraction

- We specify an observation map
- Observation map labels regions of state space with atomic propositions, e.g. $\mathcal{O}(p_1) = [4,7]$
 - The signal satisfies p_1 if its value is between 4 and 7, otherwise does not satisfy p_1
- Preimage of observation map: $\mathcal{O}^{-1}(x) = \{p \in AP | x \in \mathcal{O}(p)\}$

Rewriting MITL semantics for testing

- We rewrite $(\mathcal{O}^{-1} \circ s, t) \models \varphi$ as $\ll \varphi, \mathcal{O} \gg = \mathsf{T}$
- If the mapping ${\mathcal O}$ remains constant, we can drop it for brevity and write $\ll \varphi \gg = {\rm T}$

Boolean satisfaction of a specification by a signal

Rewriting the MTL grammar for testing:

$$\langle \langle \top \rangle \rangle_C(s,t) := \top$$

$$\langle \langle p \rangle \rangle_C(s,t) := K_{\epsilon}(s(t), \mathcal{O}(p)) = \begin{cases} \top & if \ s(t) \in \mathcal{O}(p) \\ \perp & otherwise \end{cases}$$

$$\langle \langle \neg \phi_1 \rangle \rangle_C(s,t) := \neg \langle \langle \phi_1 \rangle \rangle_C(s,t)$$

$$\langle \langle \phi_1 \lor \phi_2 \rangle \rangle_C(s,t) := \langle \langle \phi_1 \rangle \rangle_C(s,t) \sqcup \langle \langle \phi_2 \rangle \rangle_C(s,t)$$

$$\langle \langle \phi_1 \mathcal{U}_{\mathcal{I}} \phi_2 \rangle \rangle_C(s,t) := \bigsqcup_{t' \in (t+R^{\mathcal{I}})} (\langle \langle \phi_2 \rangle \rangle_C(s,t') \sqcap \prod_{t < t'' < t'} \langle \langle \phi_1 \rangle \rangle_C(s,t''))$$

where $t, t', t'' \in R$ and K_{\in} is the characteristic function of the \in relation.

 \sqcap means min and \sqcup means max; Subscript C: continuous time signals,

Akshay Rajhans (ECE, CMU)

Robustness of TL for signals

An example

MTL specification $\varphi = \Diamond_{[1,3]} p$

where $\mathcal{O}(p)$ is the set of reals strictly greater than 10

Last graph shows $\ll \varphi \gg (s, t)$ where t is time. When we are talking about $\ll \varphi \gg (s, 0)$ we drop 0 for brevity and write $\ll \varphi \gg (s)$

Problems with a Boolean result

Vulnerability to perturbations

Figure 1.1: Two signals s_1 and s_2 which satisfy the specification: $\Box(\pi_1 \rightarrow \diamond_{\leq 2}\pi_2)$. Here, $\mathcal{O}(\pi_1) = \mathbb{R}_{\leq -10}$ and $\mathcal{O}(\pi_2) = \mathbb{R}_{\geq 10}$.

Figure 1.2: The signal s_2 modified by random noise. The arrow points to the point in time where the property fails.

• We cannot distinguish between good and better satisfactions (nor between bad and worse)

Akshay Rajhans (ECE, CMU)

Outline

Background and definitions

2) Boolean satisfaction of a specification by a signal - Boolean abstraction

8 Robust satisfaction of a specification by a signal - "Robustness degree"

4 Robust TL semantics - "Robustness estimate"

Discrete time signals, timed state sequences and their robustness

6 Continuous time reasoning using discrete time analysis

Monitoring algorithm and software tool

'Robust' satisfaction of a specification by a signal

Definition of 'robustness degree'

• Given a signal s, we define the robustness degree ε as

- *ε* = Dist_ρ(s, L(φ)) [This is a signed distance]
- where $\rho(s,s') = \sup_t \{d(s(t),s'(t)) | t \in T\}$
- and where $\mathcal{L}(\phi)$ is the set of all signals that satisfy ϕ

Note that the robustness degree is the radius of the largest (open) ball centered at s that you can fit within $\mathcal{L}(\phi)$

Akshay Rajhans (ECE, CMU)

An example where the robustness degree can be computed

A simple example

< 🗇 🕨

An example where the robustness degree can be computed

A simple example

• Here, ε can be computed as 0.2398

In general, robustness degree cannot be computed directly, since we don't know 'the set of all signals that satisfy the given formula'.

< 🗇 🕨

Outline

Background and definitions

- 2 Boolean satisfaction of a specification by a signal Boolean abstraction
- 8 Robust satisfaction of a specification by a signal "Robustness degree"

4 Robust TL semantics - "Robustness estimate"

- 5 Discrete time signals, timed state sequences and their robustness
- 6 Continuous time reasoning using discrete time analysis
 - 7 Monitoring algorithm and software tool

Multi-valued (aka 'robust') TL semantics

Previous ideas

- De Alfaro et al:
 - Propositions can take values not from $\{0,1\}$ but in [0,1]
 - Idea used in 'Discounted' model checking a discount factor between 0 to 1
 - Also used for model checking of say Markov decision processes transition probabilities between 0 to 1

Idea by Fainekos

- Propositions can take real values
- Details follow...

Robust TL semantics

Inductive grammar

 \sqcap means *inf* and \sqcup means *sup*; Subscript *C*: continuous time signals

Akshay Rajhans (ECE, CMU)

Robustness of TL for signals

SVC Seminar: Aug 21, 2008 21 / 42

- 3

Robustness estimate a lower bound on robustness degree

Important result

$$\varepsilon_{estimate} = |\llbracket \phi \rrbracket(s)| \le |\text{Dist}_{\rho}(s, L(\phi))| = \varepsilon_{actual}$$

which implies

$$\forall s' \in B_{\rho}(s,\varepsilon), \ll \phi \gg (s',t) = \ll \phi \gg (s,t)$$

'estimate' a lower bound on 'degree' - why?

By construction of the semantics: An example

- Robustness degree: The radius of the lartest ε -ball we can fit within the $\mathcal{O}(p_1 \lor p_2)$
- Robustness estimate: The semantics ask us to take the *sup* of the radii of the ε-balls we can fit within both observation maps individually.

Outline

- Background and definitions
- 2 Boolean satisfaction of a specification by a signal Boolean abstraction
- 3 Robust satisfaction of a specification by a signal "Robustness degree"
- 4 Robust TL semantics "Robustness estimate"
- 5 Discrete time signals, timed state sequences and their robustness
- 6 Continuous time reasoning using discrete time analysis
 - 7 Monitoring algorithm and software tool

Why talk about discrete time signals?

Practical reasons

- We may not know the analytical equation of the signal
- We may not have access or to all the (infinite) values of a continuous signal even on a finite real time domain
- All we might have is a number of samples and the corresponding time stamps
- Typical example: result of a variable step numerical ODE integration in Matlab.

A D N A B N A

Timed State Sequences (TSS)

In words:

- Discrete time signal σ is a sequence of samples, no timing info
- A timing function au associates time with each sample
- A pair $\mu = (\sigma, \tau)$ is called a timed state sequence

Pictorially:

MITL semantics for testing

MITL semantics for TSS

$$\langle\!\langle \top \rangle\!\rangle_D(\mu, i) := \top \langle\!\langle p \rangle\!\rangle_D(\mu, i) := K_{\epsilon}(\sigma(i), \mathcal{O}(p)) \langle\!\langle \neg \phi_1 \rangle\!\rangle_D(\mu, i) := \neg \langle\!\langle \phi_1 \rangle\!\rangle_D(\mu, i) \langle\!\langle \phi_1 \lor \phi_2 \rangle\!\rangle_D(\mu, i) := \langle\!\langle \phi_1 \rangle\!\rangle_D(\mu, i) \sqcup \langle\!\langle \phi_2 \rangle\!\rangle_D(\mu, i) \langle\!\langle \phi_1 \mathcal{U}_{\mathcal{I}} \phi_2 \rangle\!\rangle_D(\mu, i) := \bigsqcup_{j \in \tau^{-1}(\tau(i) + \mathcal{I})} (\langle\!\langle \phi_2 \rangle\!\rangle_D(\mu, j) \sqcap \prod_{i \le k < j} \langle\!\langle \phi_1 \rangle\!\rangle_D(\mu, k))$$

where $i, j, k \in N$, $\sigma = \mu^{(1)}$, $\tau = \mu^{(2)}$ and K_{\in} is the characteristic function of the \in relation.

イロト イポト イヨト イヨト

Robust semantics

Robust semantics for TSS

$$\llbracket \top \rrbracket_D(\mu, i) := +\infty$$
$$\llbracket c \rrbracket_D(\mu, i) := c$$
$$\llbracket p \rrbracket_D(\mu, i) := \mathbf{Dist}_d(\sigma(i), \mathcal{O}(p))$$
$$\llbracket \neg \phi_1 \rrbracket_D(\mu, i) := -\llbracket \phi_1 \rrbracket_D(\mu, i)$$
$$\llbracket \phi_1 \lor \phi_2 \rrbracket_D(\mu, i) := \llbracket \phi_1 \rrbracket_D(\mu, i) \sqcup \llbracket \phi_2 \rrbracket_D(\mu, i)$$
$$\llbracket \phi_1 \mathcal{U}_{\mathcal{I}} \phi_2 \rrbracket_D(\mu, i) := \bigsqcup_{j \in \tau^{-1}(\tau(i) + \mathcal{I})} \left(\llbracket \phi_2 \rrbracket_D(\mu, j) \sqcap \prod_{i \le k < j} \llbracket \phi_1 \rrbracket_D(\mu, k) \right)$$

where $i, j, k \in N$, $\sigma = \mu^{(1)}$ and $\tau = \mu^{(2)}$.

2

イロト イヨト イヨト イヨト

Outline

Background and definitions

- 2 Boolean satisfaction of a specification by a signal Boolean abstraction
- 8 Robust satisfaction of a specification by a signal "Robustness degree"
- 4 Robust TL semantics "Robustness estimate"
- 5 Discrete time signals, timed state sequences and their robustness

6 Continuous time reasoning using discrete time analysis

Monitoring algorithm and software tool

Why are DT and CT semantics NOT equivalent?

Consider the DT Until operator

$$\langle \phi_1 \mathcal{U}_{\mathcal{I}} \phi_2 \rangle \rangle_D(\mu, i) := \bigsqcup_{j \in \tau^{-1}(\tau(i) + \mathcal{I})} \left(\langle \langle \phi_2 \rangle \rangle_D(\mu, j) \sqcap \prod_{i \le k < j} \langle \langle \phi_1 \rangle \rangle_D(\mu, k) \right)$$
where $i, j, k \in N, \sigma = \mu^{(1)}$ and $\tau = \mu^{(2)}$.

Observations:

- The actual interval and the samples within that interval do not coincide
- If we have no sample within some interval, TSS cannot capture the properties of the original signal

イロト イポト イラト イラト

Can we force DT and CT equivalence?

Strengthening of formulas

- Idea introduced by Huang et al
 - Jinfeng Huang, Jeroen Voeten, and Marc Geilen, *Real-time property preservation in approximations of timed systems*, Conference on Formal Methods and Models for Co-Design, 2003
- Satisfaction of a strengthened formula by a TSS will guarante (under certain assumptions) the satisfaction of the original formula by the signal

Assumptions on signal behavior - bounded spread

• Intuitively: Signal doesn't spread infinitely in a finite duration

Assumptions for sampling - at least one sample per interval

• We have enough data to build on

Let us look at these assumptions in detail...

Well-behavedness assumptions

Bounded spread

At least one sample per interval

Akshay Rajhans (ECE, CMU)

Robustness of TL for signals

Strengthening of formulas with resepect to time

Main idea: Satisfying strenghened formula in $\mathsf{DT}\Rightarrow\mathsf{satisfying}$ the original (weaker) formula in CT

Atomic predicates and their Boolean combinations

No direct strenghening needed (no 'interval' for these operators)

• $\operatorname{str}_{\Delta \tau}(p) = p$

•
$$\operatorname{str}_{\Delta au}(\neg p) = \neg p$$

•
$$\operatorname{str}_{\Delta \tau}(\varphi_1 \lor \varphi_2) = \operatorname{str}_{\Delta \tau}(\varphi_1) \lor \operatorname{str}_{\Delta \tau}(\varphi_2)$$

• $\operatorname{str}_{\Delta \tau}(\varphi_1 \wedge \varphi_2) = \operatorname{str}_{\Delta \tau}(\varphi_1) \wedge \operatorname{str}_{\Delta \tau}(\varphi_2)$

Let's see the cases where strengthening is needed, in detail on the next slide...

Strengthening of formulas with respect to time

'Until' operator: Compress by $\Delta \tau$ [where $\Delta \tau = sup_i(\tau_{i+1} - \tau_i)$]

• $\operatorname{str}_{\Delta\tau}(\varphi_1 \mathcal{U}_{\mathcal{I}} \varphi_2) = \operatorname{str}_{\Delta\tau}(\varphi_1) \ \mathcal{U}_{\mathcal{C}(\mathcal{I}, \Delta\tau)} \ \operatorname{str}_{\Delta\tau}(\varphi_2)$

'Release' operator: Expand by $\Delta \tau$

•
$$\operatorname{str}_{\Delta \tau}(\varphi_1 \mathcal{R}_{\mathcal{I}} \varphi_2) = \operatorname{str}_{\Delta \tau}(\varphi_1) \ \mathcal{R}_{\mathcal{E}(\mathcal{I}, \Delta \tau)} \ \operatorname{str}_{\Delta \tau}(\varphi_2)$$

DT - CT equivalence

Given a specification and a TSS, if

- ${\, \bullet \,}$ we know the value of $\Delta \tau$ and strengthen the specification by $\Delta \tau$ and
- well-behavedness assumptions are satisfied post-strengthening and
- we (somehow) know $\mathcal{E}(\Delta au)$ and
- and we find the robustness estimate of the given TSS on this strengthened specification

and if

• the robustness estimate of the TSS for the strengthened specification turnes out to be greater than $\mathcal{E}(\Delta \tau)$

then

• the original continuous time signal satisfies the original specification

Outline

Background and definitions

- 2 Boolean satisfaction of a specification by a signal Boolean abstraction
- 3 Robust satisfaction of a specification by a signal "Robustness degree"
- 4 Robust TL semantics "Robustness estimate"
- 5 Discrete time signals, timed state sequences and their robustness
- 6 Continuous time reasoning using discrete time analysis
- Monitoring algorithm and software tool

Monitoring algorithm

A recursive algorithm

Algorithm 1 Monitoring the Robustness of Timed State Sequences

Input: An MTL formula $\phi,$ a finite timed state sequence $\mu=(\sigma,\tau)$ and a predicate map $\mathcal O$

Output: The formula's robustness estimate

```
1: procedure MONITOR(\phi, \mu, O)
          i \leftarrow 0
2.
          while \phi \neq \varepsilon \in \overline{\mathbb{R}} do
3:
                                                                                \triangleright \phi has not been reduced to a value
                if i < \max \operatorname{dom}(\tau) then \phi \leftarrow \operatorname{DERIVE}(\phi, \sigma(i), \delta\tau(i), \bot, \mathcal{O})
4:
                else \phi \leftarrow \text{Derive}(\phi, \sigma(i), 0, \top, \mathcal{O})
5:
                end if
6:
                i \leftarrow i + 1
7.
          end while
8:
9: end procedure
```

Monitoring algorithm

A recursive algorithm (continued...)

Algorithm 2 Deriving the Future

Input: The MTL formula ϕ , the current value of the signal \overline{x} , the time period δt before the next value in the signal, a variable *last* indicating whether the next state is the last and the predicate map \mathcal{O} **Output**: The MTL formula ϕ that has to hold at the next moment in time 1: procedure DERIVE $(\phi, x, \delta t, last, \mathcal{O})$ if $\phi = \top$ then return $+\infty$ 2: else if $\phi = \varepsilon \in \mathbb{R}$ then return ε $3 \cdot$ else if $\phi = p \in AP$ then return $\text{Dist}_d(x, \mathcal{O}(p))$ 4else if $\phi = \neg \phi_1$ then return $\neg \text{DERIVE}(\phi_1, x, \delta t, last, \mathcal{O})$ 5: else if $\phi = \phi_1 \vee \phi_2$ then 6:**return** DERIVE $(\phi_1, x, \delta t, last, \mathcal{O}) \lor$ DERIVE $(\phi_2, x, \delta t, last, \mathcal{O})$ 7: else if $\phi = \phi_1 \mathcal{U}_{\mathcal{I}} \phi_2$ then 8: $\alpha \leftarrow K^{\infty}_{\epsilon}(0, \mathcal{I}) \land \text{DERIVE}(\phi_2, x, \delta t, last, \mathcal{O})$ 9: if $last = \top$ then return α 10:else return $\alpha \vee (\text{DERIVE}(\phi_1, x, \delta t, last, \mathcal{O}) \land \phi_1 \mathcal{U}_{(-\delta t) + p\mathcal{I}} \phi_2)$ 11: end if 12:end if 13:14: end procedure

Software tool

TaLiRo

- Computes the robustness estimate
- Takes MTL specifications as input
- Can handle 1D signals as of now
- Can handle polytopic observation maps
- Available at:

http://www.seas.upenn.edu/~fainekos/robustness.html

A (1) > A (2) > A

Summary

Take-away messages from this talk

- Multi-valued TL semantics make the use of TL more robust in testing
- Hopefully could help to popularize the use of TL beyond purely discrete systems, into continuous and hybrid systems :-)

Stay tuned for part II talk

- Exciting new extensions possible
- We will discuss: Verification using robust testing
- We will also briefly review approximate bisimulations
- Stay tuned...

References

Georgios Fainekos's work

- All credit should go to Georgios Fainekos, this is his work.
- On the other hand, if there were any mistakes, they were most likely mine.

References

- Some figures and formulas were taken from the thesis and talk slides by Georgios.
- The references i.e. the presentations, publications and other interesting reference material is available at:

```
http://www.seas.upenn.edu/~fainekos/the_public.html
```

Thank you

Thank you

- Thanks to Ed Clarke for hosting me
- Thanks to Bruce Krogh and Alex Donzé for reviewing the slides
- Thank you all for attending