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Preliminaries and Problem Formulation

Continuous Time Dynamical System

Definition

A continuous time dynamical system is a tuple Σ = (N,P, f , g , I ,AP,O), where:

N and P are dimensions of state space and observation space

f : RN → RN and g : RN → RP are continuous maps

I is a compact subset of RN that is the set of initial states

AP is the set of atomic propositions

O : AP → P(RP) is a predicate mapping

Trajectory

A trajectory is a pair of functions (x(t), y(t)) such that x : R≥0 → RN and
y : R≥0 → RP satisfy:

x(0) ∈ I and

∀t ∈ R≥0

ẋ(t) = f (x(t)) and
y(t) = g(x(t))
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Preliminaries and Problem Formulation

(Finite) Timed State Sequence

Definition: (Finite) TSS

A timed state sequence T in a space Q is a tuple (σ, τ,O), where, for some n ∈ N
σ = σ0, σ1, · · · , σn is a sequence of states

τ = τ0, τ1, · · · , τn is a sequence of time stamps

O : AP → P(Q) is a predicate mapping

such that, the following conditions are satisfied:

∀i ∈ {0, 1, · · · , n} we have σi ∈ Q and τi ∈ R≥0

τ is a strictly monotonically increasing sequence

Example: Numerically simulated trajectory by Matlab’s ODE integrator

Suffix operator

σ ↑i= σi , σi+1, σi+2, · · · , σn

τ ↑i= 0, τi+1 − τi , τi+2 − τi , · · · , τn − τi
T ↑i= (σ ↑i , τ ↑i ,O)
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Preliminaries and Problem Formulation

Notation

Set of all possible finite TSS

Denoted by TS

Set of all possible TS given T
Denoted by TST .
The only requirement is that they have the same time stamps as T .

Trace

Informally, ‘trace’ = sampled form of ‘trajectory’
Formally: Given a sequence of time stamps τ of length |τ |, trace of a dynamical
system Σ is a TSS T = (σ, τ,O) such that ∃ a trajectory (x , y) of Σ satisfying
σi = y(τi ) = g(x(τi )) for every i = 0, 1, · · · , |τ | − 1.

Set of all possible traces given τ

Denoted by Lτ (Σ)
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Preliminaries and Problem Formulation

(Boolean) MTL semantics for systems

Inductive Grammar

Given π ∈ AP, I ⊂ R≥0 with rational endpoints, an MTL formula φ is defined
according to the inductive grammar:

Semantics

Let T = (σ, τ,O) ∈ TS , π ∈ AP, i , j ,∈ N and ψ, φ1, φ2 be well formed MTL
formulas. Then the semantics can be recursively defined as:
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Preliminaries and Problem Formulation

Problem statement

Statement

Given φ, Σ and τ , verify that Lτ (Σ) ⊆ L(φ), where L(φ) is the set of all models
of φ i.e. L(φ) = {T ∈ TS | � φ� (T ) =T}
Or, in other words, verify that Lτ (Σ) ∩ L(¬φ) = ∅

Example: TL verification of a transmission line

Dynamics of the line given by:
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Preliminaries and Problem Formulation

Example continued. . .

Given that Uin(0) ∈ [−0.2, 0.2], a sample trace could be

We want to verify that Uout(t) stabilizes between 0.8V to 1.2V within T nS, and
that overshoot is bounded by θ V. Here, T∈ [0, 2] and θ≥ 0 are design parameters.
This specification can be written in MTL as φ = �π1 ∧ ♦[0,2]�π2, where
O(π1) = [−θ, θ] and O(π2) = [0.8, 1.2].
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Preliminaries and Problem Formulation

Robust satisfaction

Boolean result is not robust. We need something beyond result ∈ {true,false}.

So we define

Robustness degree

ε := Distρ(σ,PφT ), i.e. signed distance of σ from PφT

where,

Set of all TSS that satisfy φ

PφT = {σ′|(σ′, τ,O) ∈ TST ∩ L(φ)}

Metric

Let d(y1, y2) =
√

(y1 − y2)T (y1 − y2).
Then ρ(σ, σ′) = max{d(σ0, σ

′
0), d(σ1, σ

′
1), · · · , d(σ|τ |−1, σ

′
|τ |−1)} is a well defined

metric on (RP)|T |.
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Preliminaries and Problem Formulation

Robustness degree

Computation of PφT is expensive. So we don’t do that.
Instead, we define multi-valued a.k.a. robust semantics.

Robust semantics

Let T = (σ, τ,O) ∈ TS , π ∈ AP, i , j ,∈ N and ψ, φ1, φ2 be well formed MTL
formulas. Then the robust semantics can be recursively defined as:

Remember that: By construction, robust TL semantics give a conservative
approximation of the robustness degree.
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Why we could get stuck

Why we might get stuck

In order to proceed with the verification

We will need to check the robust valuation of the given specification for every
trace.

If [[φ]](Ti ) > 0 ∀Ti , then the system satisfies the formula

If ∃Tj such that [[φ]](Ti ) < 0, then the system does not satisfy the formula as
∃ a counterexample

But. . .

In case of continuous systems, ∃ infinite traces that can arise out of a finite
non-empty non-singleton set of initial conditions.
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A short detour: Approximate bisimulation relations and bisimulation functions

Definitions

Labeled transition system

A labeled transition system with observations is a tuple
T = (Q,Σ,→,Q0,Π,� · �) that consists of

a (possibly infinite) set Q of states

a (possibly infinite) set Σ of labels

a transition relation →⊆ Q× Σ×Q
a (possibly infinite) set Q0 ⊆ Q of initial states

a (possibly infinite) set Π of of observations

an observation map � · �: Q → Π

σ-successor

A set valued map given ∀q ∈ Q by: Postσ(q) = {q′ ∈ Q|q σ→ q′}

Trajectory q0 σ0

→ q1 σ1

→ q2 σ2

→ . . ., where q0 ∈ Q0
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A short detour: Approximate bisimulation relations and bisimulation functions

Approximate bisimulation relations

Given labeled transition systems
T1 = (Q1,Σ,→1,Q0

1,Π,� · �) and T2 = (Q2,Σ,→2,Q0
2,Π,� · �),

assuming Q1, Q2 and Π are metric spaces,
assuming Q0

1 and Q0
2 and Postσ1 (q1) and Postσ2 (q2) are compact sets,

Definition: δ-approximate Bisimulation relation

A relation Bδ ⊆ Q1 ×Q2 is a δ-approximate bisimulation relation between T1 and
T2 if ∀(q1, q2) ∈ Bδ

dΠ(� q1 �1,� q2 �2) ≤ δ
∀q1

σ→1 q′1,∃q2
σ→2 q′2 such that (q′1, q

′
2) ∈ Bδ

∀q2
σ→2 q′2,∃q1

σ→1 q′1 such that (q′1, q
′
2) ∈ Bδ

T1 and T2 are said to be approximately bisimilar with precision δ, if there exists
such Bδ, written as T1 ∼δ T2.

Note: When δ=0, we have the usual notion of exact bisimulation.
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A short detour: Approximate bisimulation relations and bisimulation functions

Bisimulation functions

Definition: Bisimulation function

A continuous function VB : Q1 ×Q2 → R≥0 is a bisimulation function for the
dynamical system Σ if its level sets are closed sets and
∀(q1, q2) ∈ Q1 ×Q2, we have:

VB(q1, q2) ≥ dΠ(� q1 �1,� q2 �2)

VB(q1, q2) ≥ max
q2

σ→2q′
2

min
q1

σ→1q′
1
VB(q′1, q

′
2)

VB(q1, q2) ≥ max
q1

σ→1q′
1

min
q2

σ→2q′
2
VB(q′1, q

′
2)

Theorem

If VB is a bisimulation function, then ∀δ ≥ 0, the set
Bδ = {(q1, q2) ∈ Q1 ×Q2|VB(q1, q2) ≤ δ} is a δ-approximate bisimulation
relation between T1 and T2.
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A short detour: Approximate bisimulation relations and bisimulation functions

Analogous concepts for continuous systems

Pappas

“Bisimilar Linear Systems” - Automatica, ’03

Explains how the notion of exact bisimulations can be developed for
continuous systems

Girard and Pappas

Some good papers that talk about approximate bisimulations

“Approximate Bisimulations for Constrained Linear Systems” - CDC ’05

“Approximate Bisimulations for Nonlinear Dynamical Systems” - CDC ’05

“Approximation Metrics for Discrete and Continuous Systems” - IEEE
Transactions on Automatic Control, ’07
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A short detour: Approximate bisimulation relations and bisimulation functions

Constructing bisimulation functions

For linear systems

For autonomous linear systems ẋ = Ax , y = Cx , we can get a valid bisimulation
function of the type V (x1, x2) =

√
(x1 − x2)TM(x1 − x2) if we can get M that

satisfies

M ≥ CTC and

ATM + MA ≤ 0

Note: Here we need to solve a semidefinite program.

For nonlinear systems

For autonomous nonlinear systems ẋ = f (x), y = g(x), there exists a valid
bisimulation function of the form V (x1, x2) =

√
q(x1, x2) if

q(x1, x2)− ||g1(x1)− g2(x2)||2 is sum of squares, and

−∂q(x1,x2)
∂x1

f1(x1)− ∂q(x1,x2)
∂x2

f2(x2) is sum of squares.

Note: Here we need to solve a sum of sqares program.
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A short detour: Approximate bisimulation relations and bisimulation functions

What we need to remember

Take-away messages

For stable systems, bisimulation functions exist and can be computed
(possibly with some effort).

The level sets of bisimulation functions are invariant sets.

If two trajectories start with some value of bisimulation function, it cannot
increase as time increases.

Which means, the distance between any two trajectories cannot increase as
time increases.
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How bisimulation function comes to our rescue here

How does a bisimulation function apply here?

A smart idea

Consider an approximate bisimulation relation between a system and itself. Then
any trajectory that starts with the value of the bisimulation function = r from
another trajectory, remains within this ‘robustness tube’ of radius r.

The connecting piece

Theorem: Given V a bisimulation function, (x1, y1) and (x2, y2) two trajectories
whose traces are T1 and T2,
if ∃i ∈ {1, 2} such that |[[φ]](Ti )| > V (x1(0), x2(0))
then that guarantees that � φ� (T1) =� φ� (T2)

Which means that we can. . .

reason about a neighborhood of initial conditions by reasoning about only
one (central) initial condition

reason about an entire initial condition set by reasoning about finitely many
initial conditions
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Verification algorithm

Setting up the algo. - sampling the initial conditions set

Theorem: In words

Let V be a bisimulation function, I ⊂ RN a compact set of initial conditions.
Then, ∀δ > 0, ∃ a finite set of points {x1, x2, · · · , xr} ⊂ I such that,

∀x ∈ I ,∃xi , i ∈ {1, 2, · · · , r}s.t.V (x , xi ) ≤ δ (1)

Pictorially:

Centers of these balls will form the set {x1, x2, · · · , xr}, while radius will be δ.

Discretization operator

Given δ > 0, Disc(I , δ) gives out a set {x1, x2, · · · , xr} that satisfies (1).
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Verification algorithm

Verification algorithm

Start

1 Choose δ, get points xi (0) by doing Disc(I , δ)

2 Simulate (xi , yi ) and get Ti .
3 Find out the value of [[φ]](Ti ).

Case 1: Satisfaction

If [[φ]](Ti ) > δ, ∀i ∈ {1, 2, · · · , r}, we have: � φ�=T ∀T ∈ Lτ (Σ)
Report that formula is satisfied and stop.

Case 2: Counterexample

If ∃i ∈ {1, · · · , r} such that [[φ]](Ti ) < 0, then that trace is a counterexample.
Report counterexample and stop.

Case 3: Recursive refinement

In case of inconclusive results, i.e. 0 < [[φ]](Ti ) < δ, for some i , refine locally the
initial conditions (i.e. reduce δ, get more centers) and re-run the tests.
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Verification algorithm

Possible outcomes of the algorithm

One of the three outcomes possible:

Formula holds for every trajectory from the entire initial condition set

Formula holds for a subset of the initial condition set

Formula does not hold, algorithm returns a counterexample

Less likely but possible: Result inconclusive, if [[φ]] = 0.

An observation

The more robust the system, the less number of individual tests needed.
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Verification algorithm

Summary

Take-away messages from part-I talk

Multi-valued TL semantics make the use of TL more robust in testing

We can analyze CT signals by corresponding DT TSSs after ‘strengthening’
the specifications

Take-away messages from today’s part-II talk

Multi-valued TL semantics can be extended from signals to systems

Bounded time verification can be approached using multi-valued TL testing

The more robust the system, the easier the verification
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Other contributions and related work
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Other contributions and related work

Other contributions of the thesis and related work

Robust testing of hybrid systems - An interesting application

“Robust Test Generation and Coverage for Hybrid Systems” - Julius, Fainekos,
Anand, Lee, Pappas, HSCC ’07

Being within an observation map of a proposition is analogous to being in a
discrete location.

Unsafe regions are also analogous to observation maps.

Temporal constraints are induced by the switching times e.g. you have to or
cannot switch within a given interval of time.

Other contributions

TL Motion Planning:

Reachability, collision avoidance, seqencing, coverage and liveness
requirements of a motion planning problem can be cast as a TL problem.

Robustness techniques can be applied to those problems too.

Controller synthesis: Given an LTL formula φ, generate a controller for a
system such that it satisfies φ
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Other contributions and related work

References

Relevant papers

“Temporal Logic Verification Using Simulation” - Fainekos, Girard, Pappas

“Approximate Bisimulations for Constrained Linear Systems” - Girard, Pappas

“Approximate Bisimulations for Nonlinear Dynamical Systems” - Girard,
Pappas

“Approximation Metrics for Discrete and Continuous Systems” - Girard,
Pappas

“Bisimilar Linear Systems” - Pappas
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Other contributions and related work

Thank you

Thank you

Thanks to Ed Clarke for hosting me

Thanks to Alex Donzé for reviewing the slides

Thank you all for attending
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